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Abstract

CamIoT is the first wrist-worn platform that uses an
outward-facing camera to recognize and interact with IoT
objects at a distance. CamIoT leverages the index finger’s
gesture to provides these novelties: (i) Utilizing the finger’s
orientation for guiding the recognition of an IoT object in
the camera view; and (ii) Detecting finger’s circumduction
and flexion for the function selection of the chosen IoT ob-
ject. Finger tracking plays an essential role in main parts
of CamIoT system involving in both object recognition and
interaction with appliances. Thus in this report, we mainly
focus on three methods we implemented for finger track-
ing in CamIoT. We then experimentally measure their per-
formances and discuss their limitations. Other fundamental
parts of our work are also introduced and presented briefly
to explain the system thoroughly.

Introduction

CamIoT (camera-based IoT) is a wrist-worn Internet of
Things (IoT) device for recognizing (smart) home appli-
ances and interacting with them. With IoT devices be-
coming so ubiquitous, the demand for better and smoother
usability features proliferates. Often such interactions
require extra efforts to retrieve apps from personal de-
vices or instrument the environment for voice or ges-
ture control. CamIoT’s goal is to enable always-available
instrumentation-free interaction by merely pointing and
gesturing to IoT objects. The performance in this wrist-
worn device consists of two main sections: object recogni-
tion and interaction with appliances. In the first part, this
hardware/software platform recognizes the object the user
is pointing at. Once the taken image is classified, CamIoT
allows the user to choose a function based on the selected
object by moving his/her index finger.

Figure 1: Camiot uses a wrist-worn outward-facing camera to rec-
ognize an IoT object as a user points at it, using finger flexion
and circumduction gestures to interact with control shortcuts of a
selected IoT.

System Design
Our hardware consists of a Raspberry Pi Zero W as the con-
troller, an MPU 6050 IMU sensor for providing accelerom-
eter and gyroscope data, and a Raspberry PI Camera Mod-
ule V2 for capturing IoT objects and the user’s finger. For
audio feedback, we embedded a speaker under CamIoT’s
case. For the object recognition part only, the images taken
are sent to a local server for classification (detailed in the
following sections).

System Overview

The process starts when the user raises his arm to take a
picture. CamIoT senses such arm movements through the
IMU data and based on [4]’s method. The image is then
sent to the local server for classification. Once the result is
communicated back to the device, the voice feedback an-
nounces the result. In this step, if the user decides to hold
his/her finger in the camera view, the finger’s direction helps
to crop the image (we refer to this technique as disambigua-
tion in later sections). After recognition, CamIoT solely
tracks the index finger’s position in the camera view (fin-
ger circumduction). The current setup matches the finger’s
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location to either the left, middle, or right direction. The
user confirms the finger’s direction by dropping his/her fin-
ger from the camera view (flexion). The chosen direction is
then mapped to a particular function on the IoT device (e.g.,
turn down TV Volume).

Figure 2: CamIoT uses Finger flexion and circumduction to select control
functions of IoT devices. Image credit: Wang et al. [31]

Methods

Appliance (Object) Recognition

In this work, we carry out the few-shot learning of a Con-
vNet for appliance recognition, as ConvNets are better for
capturing small objects from images with features of large
receptive fields [8, 1]. Moreover, we propose to utilize the
finger for disambiguation. And feed the model with the in-
dicated portion of an image for prediction. Such a method
can potentially benefit model performance because: Model
attention can focus on the appliances with reduced back-
ground areas, thus reducing the probability of wrong classi-
fications by eliminating other potential appliances from the
background.

Prediction: TV: 0.92; PC: 0.05; ......

Classifer
VGG-16

Finger Detection

Disambiguration

b Deployment

Random Scaling
Random Cropping
Random Rotation
Random Padding

a Training

Random Brightness
Random saturation
Random Contrast

Spatial
Transform

Lighting
Transform

Figure 3: Object recognition network. The model consists of a shallow
classifier of two fully connected layers and a frozen VGG-16 that pre-
trained on [8] for generating deep feature maps.

In the setup stage, five images of each appliance are
taken by camIoT from various angles as training data. Dur-
ing the deployment (3b), the finger segmentation is first de-
rived automatically from the query image. Then, guided by
the finger’s direction, the image is cropped to 0.6 of its size
and fed into the model for inference.

Finger Detection

To recognize the circumduction and flexion of the figure,
CamIoT performs automatic finger segmentation from the
camera view. It uses the characteristics of skin color and
edge detection. And it does the finger segmentation without
any supervision.

Canny
Edge

Detection

Input Image

Finger Segmentation and Direction

b
Color
Space

Filtering

a

Rolling
and

Masking

c

Largest
Island

Filtering,
Smoohting,

Dilation

d

Figure 4: Finger Detection Pipeline

We first derive a rough finger mask (Figure 4a) with
the skin color model in YCbCr space [6]. Multiple false-
positive regions can happen in the segmentation map due
to background similarities. Thus an edge mask (Figure 4b)
with Canny filter is generated and applied in this step (Fig-
ure 4c). We finally take the largest isolated region on the
resulted finger mask that lies on the lower part of the im-
age as the finger prediction, and further derive the finger
direction by linear interpreting the row-wise midpoints of
the segmentation (Figure 4d). If no region has an area size
bigger than a preset threshold, the image is detected as no
finger.

This finger detection approach was not always robust and
effective in different setups with a bright background. Thus
we explored two more methods, which are as follows: 1.
Depth Map Measurement, 2. Template Matching. For these
approaches, we modified our hardware and added another
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Figure 5: Adding a second camera to CamIoT and hardware re-design

camera (PC webcam) to our system (5).

Depth Map

For the depth map approach, the calculated depth map is
utilized as the mask to separate the background and the fin-
gers because fingers should be much closer to the camera.
To find the depth map, we took images from both of the
cameras. Although a depth map based on a single camera is
recently reported [7, 3], it requires either video recording or
better quality cameras with accessible and adjustable intrin-
sic features. So we continued with the two-camera option
due to our camera conditions and the lower complexity of
the dual-camera setup. Our depth map approach can be di-
vided into two stages - calibration and calculation. In depth
map procedure, unlike our case, usually, the two cameras
are identical and only vary in their location. So we cali-
brated across the cameras using an 8x6 checkerboard. We
then estimated the intrinsic parameters of the cameras, in-
cluding focal length and the image distortion.

Figure 6: Depth Map Pipeline. ( Green Arrow:Expected direction Red
Arrow: Predicted direction)

With each camera’s estimated intrinsic parameters, im-
ages were resized and scaled according to the parameters to
provide proper depth map measurement (6a). After the cal-
ibration, the images were processed to estimate the depth
map. The depth map estimation is based on Stereo Pro-
cessing by Semi-Global Matching and Mutual Information
(StereoSGBM) [2]. Once the depth map is estimated, we
could utilize the depth information to attain further details,
including point direction of the fingers and the mask of
background and fingers (6b). Applying blob detection on

the disparity (depth map) image (based on color and thresh-
olding), we calculated the fingertip area. Assuming the fin-
ger end is fixed in all the frames (not much movement at its
end is possible), a vector connecting the bottom portion to
the center of the calculated blob is the finger direction.

Template Matching

This time we utilized the differences between the intrinsic
parameters of the cameras. The webcam provided higher
resolution and longer focal length. Thus its images were
more zoomed in and focused; in a sense, more ideal to be
treated as our template. We cropped the fingertip treating
it as a kernel, 2D convoluted it through Pi camera image.
Following different OpenCV template matching algorithms,
our data set best results were generated by ”TM SQDIFF
NORMED”:

R(x, y) =

∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
.

Figure 7: a.Pi Image b.The chosen template c.Webcam image 4.processed
image (Green Arrow:Expected Direction Red Arrow:Predicted Direction)

Again, knowing the index finger’s end doesn’t move, we
calculated its location in the training stage. Once we found
the template position in the Pi image, a vector from the in-
dex finger’s end to the detected template would indicate the
finger direction (7).

Results
To evaluate the accuracy of selecting appliances from a dis-
tance, We built a data set, including ten appliances. First,
the model was trained using five images per object taken
from about 0.5 meters distance. The photos were also taken
from various angles to profile the visual appearance of the
objects comprehensively. The users were asked to point

3
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Figure 8: Appliance Recognition Evaluation

at each object 20 times in random order in three distance
ranges: 2m, 4m, 6m.

We compared our algorithm against two template match-
ing methods; one used SIFT (Scale-invariant feature trans-
form) as the feature descriptor while the other applied
SURF (Speeded-Up Robust Features). Figure 8 shows
that our method achieves recognition accuracy of 96.00%,
77.33% and 60.67 for 2m, 4m, and 6m distances, respec-
tively, which are the highest among the methods.
For Finger Detection, we first found the most natural thresh-
olds of angles for dividing the virtual panel. The panel con-
sisted of only three segments (left, middle, right), and we
ran a pilot study to find the thresholds based on the users’
performance. We asked each user to naturally point at each
segment in a random order several times. We then derived
the optimal thresholds from being the angles that best split
different segments based on an exhaustive search. The re-
sultant threshold are shown in 9

Figure 9: Finger Tracking segmentation, calculated thresholds and re-
ported accuracy for flexion and circumduction.

For evaluation of finger circumduction and flexion, we
informed the user of the segmentation thresholds, and again
measured his performance while he was pointing at the di-
rections in random order. Specifically, after each pointing,
we asked the user to perform a flexion. The study includes
all ten appliances and three pointing gestures that happened
for each segment. Figure 9 indicates the detection accuracy
of selecting different segments and flexing action (flexion is
used in a confirmation manner in our system design). Our
algorithm reached a mean accuracy of 84.44% while the
overall flexion accuracy was around 80.00% (9).

Due to the COVID-19 situation and limited access to per-
form user study, our experiments only involved 1-3 partic-
ipants. Furthermore, given the hardware limitation and the
pandemic, we could not regenerate the above studies to test
the depth map and template matching methods. Thus we
took a different approach where we only focused on cor-
ner cases in the discussed methods. Our goal was to ex-
plore the possibility of improving the current design using
the computational techniques introduced in the depth map
and template matching sections. In this experiment, we
only considered edge cases. Scenarios such as where the
background is noisy or too bright, the skin color resembles
the background color. Few other scenarios were when the
finger is mostly out of camera view, or the back of the hand
is partially occluding the field of view. With these assump-
tions in mind, we experimented 10-15 cases using depth
map and template matching methods. Based on our find-
ings, we might improve finger tracking by 12.4% via tem-
plate matching or 7.5% by using depth map in the overall
design.

Future Works
Although the computational methods seemed promising in
terms of overall performance, their downside was our hard-
ware capacity. To fully investigate such methods we needed
preferably identical cameras and RTOS (better embedded
systems and C/C++ coding platform instead of Python).
Moreover the depth map from the two different cameras,
generated a noisy output which significantly affected the
blob detection in some cases. Therefore there’s an demand
for noise removal from depth maps [5]. As mentioned,
the template matching approach was more effective. How-
ever, one of the challenges is to provide a proper template
which can highly affect the outcome. The effective tem-
plate area can be calculated in the setup stage through train-
ing images. Our proposed method was to define a rein-
forcement learning network with a policy to optimize the
overall location of the finger tip across the training data
set. Like any other methods computational approaches dis-
cussed here also have their own trade-offs. But the improve-
ment shown in the results motivates more investigation in
this domain. To avoid full implementation and its com-
plexity, an interesting approach would be to combine these
computational methods with the current finger tracking al-
gorithms.
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