
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#0017

CVPR
#0017

CVPR 2020 Submission #0017. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CamIoT: Recognizing and Interacting with Distant IoT Objects Using a
Wrist-Worn Outward-Facing Camera

Anonymous CVPR submission

Paper ID 0017

Abstract

CamIoT is the first wrist-worn platform that uses an
outward-facing camera to recognize and interact with IoT
objects at a distance. CamIoT leverages the index finger’s
gesture to provides these novelties: (i) Utilizing the finger’s
orientation for guiding the recognition of an IoT object in
the camera view; and (ii) Detecting finger’s circumduction
and flexion for the function selection of the chosen IoT ob-
ject. Finger tracking plays an essential role in main parts
of CamIoT system involving in both object recognition and
interaction with appliances. Thus in this report, we mainly
focus on three methods we implemented for finger track-
ing in CamIoT. We then experimentally measure their per-
formances and discuss their limitations. Other fundamental
parts of our work are also introduced and presented briefly
to explain the system thoroughly.

Introduction

CamIoT (camera-based IoT) is a wrist-worn Internet of
Things (IoT) device for recognizing (smart) home appli-
ances and interacting with them. With IoT devices be-
coming so ubiquitous, the demand for better and smoother
usability features proliferates. Often such interactions
require extra efforts to retrieve apps from personal de-
vices or instrument the environment for voice or ges-
ture control. CamIoT’s goal is to enable always-available
instrumentation-free interaction by merely pointing and
gesturing to IoT objects. The performance in this wrist-
worn device consists of two main sections: object recogni-
tion and interaction with appliances. In the first part, this
hardware/software platform recognizes the object the user
is pointing at. Once the taken image is classified, CamIoT
allows the user to choose a function based on the selected
object by moving his/her index finger.

Figure 1: Camiot uses a wrist-worn outward-facing camera to rec-
ognize an IoT object as a user points at it, using finger flexion
and circumduction gestures to interact with control shortcuts of a
selected IoT.

System Design
Our hardware consists of a Raspberry Pi Zero W as the con-
troller, an MPU 6050 IMU sensor for providing accelerom-
eter and gyroscope data, and a Raspberry PI Camera Mod-
ule V2 for capturing IoT objects and the user’s finger. For
audio feedback, we embedded a speaker under CamIoT’s
case. For the object recognition part only, the images taken
are sent to a local server for classification (detailed in the
following sections).

System Overview

The process starts when the user raises his arm to take a
picture. CamIoT senses such arm movements through the
IMU data and based on [4]’s method. The image is then
sent to the local server for classification. Once the result is
communicated back to the device, the voice feedback an-
nounces the result. In this step, if the user decides to hold
his/her finger in the camera view, the finger’s direction helps
to crop the image (we refer to this technique as disambigua-
tion in later sections). After recognition, CamIoT solely
tracks the index finger’s position in the camera view (fin-
ger circumduction). The current setup matches the finger’s

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#0017

CVPR
#0017

CVPR 2020 Submission #0017. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

location to either the left, middle, or right direction. The
user confirms the finger’s direction by dropping his/her fin-
ger from the camera view (flexion). The chosen direction is
then mapped to a particular function on the IoT device (e.g.,
turn down TV Volume).

Figure 2: CamIoT uses Finger flexion and circumduction to select control
functions of IoT devices. Image credit: Wang et al. [31]

Methods

Appliance (Object) Recognition

In this work, we carry out the few-shot learning of a Con-
vNet for appliance recognition, as ConvNets are better for
capturing small objects from images with features of large
receptive fields [8, 1]. Moreover, we propose to utilize the
finger for disambiguation. And feed the model with the in-
dicated portion of an image for prediction. Such a method
can potentially benefit model performance because: Model
attention can focus on the appliances with reduced back-
ground areas, thus reducing the probability of wrong classi-
fications by eliminating other potential appliances from the
background.

Prediction: TV: 0.92; PC: 0.05;

Classifer
VGG-16

Finger Detection

Disambiguration

b Deployment

Random Scaling
Random Cropping
Random Rotation
Random Padding

a Training

Random Brightness
Random saturation
Random Contrast

Spatial
Transform

Lighting
Transform

Figure 3: Object recognition network. The model consists of a shallow
classifier of two fully connected layers and a frozen VGG-16 that pre-
trained on [8] for generating deep feature maps.

In the setup stage, five images of each appliance are
taken by camIoT from various angles as training data. Dur-
ing the deployment (3b), the finger segmentation is first de-
rived automatically from the query image. Then, guided by
the finger’s direction, the image is cropped to 0.6 of its size
and fed into the model for inference.

Finger Detection

To recognize the circumduction and flexion of the figure,
CamIoT performs automatic finger segmentation from the
camera view. It uses the characteristics of skin color and
edge detection. And it does the finger segmentation without
any supervision.

Canny
Edge

Detection

Input Image

Finger Segmentation and Direction

b
Color
Space

Filtering

a

Rolling
and

Masking

c

Largest
Island

Filtering,
Smoohting,

Dilation

d

Figure 4: Finger Detection Pipeline

We first derive a rough finger mask (Figure 4a) with
the skin color model in YCbCr space [6]. Multiple false-
positive regions can happen in the segmentation map due
to background similarities. Thus an edge mask (Figure 4b)
with Canny filter is generated and applied in this step (Fig-
ure 4c). We finally take the largest isolated region on the
resulted finger mask that lies on the lower part of the im-
age as the finger prediction, and further derive the finger
direction by linear interpreting the row-wise midpoints of
the segmentation (Figure 4d). If no region has an area size
bigger than a preset threshold, the image is detected as no
finger.

This finger detection approach was not always robust and
effective in different setups with a bright background. Thus
we explored two more methods, which are as follows: 1.
Depth Map Measurement, 2. Template Matching. For these
approaches, we modified our hardware and added another

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#0017

CVPR
#0017

CVPR 2020 Submission #0017. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5: Adding a second camera to CamIoT and hardware re-design

camera (PC webcam) to our system (5).

Depth Map

For the depth map approach, the calculated depth map is
utilized as the mask to separate the background and the fin-
gers because fingers should be much closer to the camera.
To find the depth map, we took images from both of the
cameras. Although a depth map based on a single camera is
recently reported [7, 3], it requires either video recording or
better quality cameras with accessible and adjustable intrin-
sic features. So we continued with the two-camera option
due to our camera conditions and the lower complexity of
the dual-camera setup. Our depth map approach can be di-
vided into two stages - calibration and calculation. In depth
map procedure, unlike our case, usually, the two cameras
are identical and only vary in their location. So we cali-
brated across the cameras using an 8x6 checkerboard. We
then estimated the intrinsic parameters of the cameras, in-
cluding focal length and the image distortion.

Figure 6: Depth Map Pipeline. (Green Arrow:Expected direction Red
Arrow: Predicted direction)

With each camera’s estimated intrinsic parameters, im-
ages were resized and scaled according to the parameters to
provide proper depth map measurement (6a). After the cal-
ibration, the images were processed to estimate the depth
map. The depth map estimation is based on Stereo Pro-
cessing by Semi-Global Matching and Mutual Information
(StereoSGBM) [2]. Once the depth map is estimated, we
could utilize the depth information to attain further details,
including point direction of the fingers and the mask of
background and fingers (6b). Applying blob detection on

the disparity (depth map) image (based on color and thresh-
olding), we calculated the fingertip area. Assuming the fin-
ger end is fixed in all the frames (not much movement at its
end is possible), a vector connecting the bottom portion to
the center of the calculated blob is the finger direction.

Template Matching

This time we utilized the differences between the intrinsic
parameters of the cameras. The webcam provided higher
resolution and longer focal length. Thus its images were
more zoomed in and focused; in a sense, more ideal to be
treated as our template. We cropped the fingertip treating
it as a kernel, 2D convoluted it through Pi camera image.
Following different OpenCV template matching algorithms,
our data set best results were generated by ”TM SQDIFF
NORMED”:

R(x, y) =

∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
.

Figure 7: a.Pi Image b.The chosen template c.Webcam image 4.processed
image (Green Arrow:Expected Direction Red Arrow:Predicted Direction)

Again, knowing the index finger’s end doesn’t move, we
calculated its location in the training stage. Once we found
the template position in the Pi image, a vector from the in-
dex finger’s end to the detected template would indicate the
finger direction (7).

Results
To evaluate the accuracy of selecting appliances from a dis-
tance, We built a data set, including ten appliances. First,
the model was trained using five images per object taken
from about 0.5 meters distance. The photos were also taken
from various angles to profile the visual appearance of the
objects comprehensively. The users were asked to point

3

https://docs.opencv.org/master/df/dfb/group__imgproc__object.html#gga3a7850640f1fe1f58fe91a2d7583695da5be00b45a4d99b5e42625b4400bfde65
https://docs.opencv.org/master/df/dfb/group__imgproc__object.html#gga3a7850640f1fe1f58fe91a2d7583695da5be00b45a4d99b5e42625b4400bfde65

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#0017

CVPR
#0017

CVPR 2020 Submission #0017. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8: Appliance Recognition Evaluation

at each object 20 times in random order in three distance
ranges: 2m, 4m, 6m.

We compared our algorithm against two template match-
ing methods; one used SIFT (Scale-invariant feature trans-
form) as the feature descriptor while the other applied
SURF (Speeded-Up Robust Features). Figure 8 shows
that our method achieves recognition accuracy of 96.00%,
77.33% and 60.67 for 2m, 4m, and 6m distances, respec-
tively, which are the highest among the methods.
For Finger Detection, we first found the most natural thresh-
olds of angles for dividing the virtual panel. The panel con-
sisted of only three segments (left, middle, right), and we
ran a pilot study to find the thresholds based on the users’
performance. We asked each user to naturally point at each
segment in a random order several times. We then derived
the optimal thresholds from being the angles that best split
different segments based on an exhaustive search. The re-
sultant threshold are shown in 9

Figure 9: Finger Tracking segmentation, calculated thresholds and re-
ported accuracy for flexion and circumduction.

For evaluation of finger circumduction and flexion, we
informed the user of the segmentation thresholds, and again
measured his performance while he was pointing at the di-
rections in random order. Specifically, after each pointing,
we asked the user to perform a flexion. The study includes
all ten appliances and three pointing gestures that happened
for each segment. Figure 9 indicates the detection accuracy
of selecting different segments and flexing action (flexion is
used in a confirmation manner in our system design). Our
algorithm reached a mean accuracy of 84.44% while the
overall flexion accuracy was around 80.00% (9).

Due to the COVID-19 situation and limited access to per-
form user study, our experiments only involved 1-3 partic-
ipants. Furthermore, given the hardware limitation and the
pandemic, we could not regenerate the above studies to test
the depth map and template matching methods. Thus we
took a different approach where we only focused on cor-
ner cases in the discussed methods. Our goal was to ex-
plore the possibility of improving the current design using
the computational techniques introduced in the depth map
and template matching sections. In this experiment, we
only considered edge cases. Scenarios such as where the
background is noisy or too bright, the skin color resembles
the background color. Few other scenarios were when the
finger is mostly out of camera view, or the back of the hand
is partially occluding the field of view. With these assump-
tions in mind, we experimented 10-15 cases using depth
map and template matching methods. Based on our find-
ings, we might improve finger tracking by 12.4% via tem-
plate matching or 7.5% by using depth map in the overall
design.

Future Works
Although the computational methods seemed promising in
terms of overall performance, their downside was our hard-
ware capacity. To fully investigate such methods we needed
preferably identical cameras and RTOS (better embedded
systems and C/C++ coding platform instead of Python).
Moreover the depth map from the two different cameras,
generated a noisy output which significantly affected the
blob detection in some cases. Therefore there’s an demand
for noise removal from depth maps [5]. As mentioned,
the template matching approach was more effective. How-
ever, one of the challenges is to provide a proper template
which can highly affect the outcome. The effective tem-
plate area can be calculated in the setup stage through train-
ing images. Our proposed method was to define a rein-
forcement learning network with a policy to optimize the
overall location of the finger tip across the training data
set. Like any other methods computational approaches dis-
cussed here also have their own trade-offs. But the improve-
ment shown in the results motivates more investigation in
this domain. To avoid full implementation and its com-
plexity, an interesting approach would be to combine these
computational methods with the current finger tracking al-
gorithms.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. corr
abs/1512.03385 (2015), 2015. 2

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#0017

CVPR
#0017

CVPR 2020 Submission #0017. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[2] H. Hirschmuller. Stereo processing by semiglobal
matching and mutual information. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
30(2):328–341, 2008. 3

[3] J. Jang and J. Paik. Dense depth map generation using a
single camera with hybrid auto-focusing. In 2015 IEEE
5th International Conference on Consumer Electronics
- Berlin (ICCE-Berlin), pages 277–278, 2015. 3

[4] Runchang Kang, Anhong Guo, Gierad Laput, Yang Li,
and Xiang ’Anthony’ Chen. Minuet: Multimodal in-
teraction with an internet of things. In To Appear at
the ACM symposium on Spatial user interaction. ACM,
2019. 1

[5] S. Kim, M. Kim, and Y. Ho. Depth image filter for
mixed and noisy pixel removal in rgb-d camera sys-
tems. IEEE Transactions on Consumer Electronics,
59(3):681–689, 2013. 4

[6] S Kolkur, D Kalbande, P Shimpi, C Bapat, and J
Jatakia. Human skin detection using rgb, hsv and ycbcr
color models. arXiv preprint arXiv:1708.02694, 2017.
2

[7] S. Lee, J. Lee, M. H. Hayes, A. K. Katsaggelos, and
J. Paik. Single camera-based full depth map estima-
tion using color shifting property of a multiple color-
filter aperture. In 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 801–804, 2012. 3

[8] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 2

5

