
Decoding EEG Signals with Deep Learning
ECE C247 Winter 2020 Project

Alexie Pogue
UID: 204517263
anpogue@ucla.edu

Amirali Omidfar
UID: 204869201
omidfar@ucla.edu

Eric Peltola
UID: 204590970

ericpeltola@ucla.edu

Kenny Chen
UID: 505219294

kennyjchen@ucla.edu

Abstract

In this project, we compared several deep learning ar-
chitectures using EEG signals recorded from nine different
subjects. In particular, we trained five neural network mod-
els using individual and cascaded architectures consisting
of Convolutional Neural Networks (CNNs), Long Short-
Term Memory units (LSTMs) and Gated Recurrant units
(GRUs). For each of the nine subjects, in addition to all
subjects at once, we compared each architecture’s classi-
fication performance against an independent test set. Af-
ter hyperparameter optimization and several stages of data
preprocessing, we achieved a best decoding accuracy of
74% for a single subject and 54% for models trained on all
subjects. In addition, we investigated the use of generative
models such as Variational Autoencoders (VAEs) and Gen-
erative Adversarial Networks (GANs) for data augmenta-
tion. The insights gained throughout this project provided a
better understanding about the choices of various parame-
ters and architectures on this classification task and in deep
learning as a whole.

1. Introduction
Machine learning has proven to be an invaluable tool in

brain-computer innovation to assist and rehabilitate individ-
uals with brain-related impairments. To this end, this study
investigates deep learning methods for end-to-end elec-
troencephalographic (EEG) analysis of movement-related
information generated by clinical subjects. Beginning with
raw EEG data [2], results from experiments using various
machine-learning pipelines were compared by classification
accuracy metrics.

Our primary concern in data preprocessing was the lim-
ited quantity of training set examples. To offset the poten-
tial for overfitting, measures were taken in data regulariza-
tion and augmentation. Fixed noise reduction techniques
such as band pass filtering and data smoothing using a Han-
ning window were used. Among regularization approaches
were Gaussian noise injection and random erasing of data
clusters. Methods to increase the number of viable training
examples were also considered using VAEs and GANs.

The focus of our work was on the construction and anal-

ysis of neural network architectures for signal decoding ex-
periments. In total, a CNN, LSTM, GRU, CNN + LSTM
and CNN + GRU were designed. Using these models we
were interested in assessing different architectures individu-
ally and in combination for the evaluation of data with tem-
poral structure. Specific methods, results, and analysis of
dominant trends are given in the following sections.

2. Methods
2.1. Pre-Processing the Training Data

As the EEG dataset contained only 2115 total samples,
regularization was an important factor to consider, as train-
ing deep networks on a relatively small training set is prone
to overfitting [3]. In addition to directly increasing the train-
ing set size via data augmentation, other methods of prepro-
cessing the input EEG data were considered for this study.

The preprocessing pipeline used in this study was com-
prised of four functions, the parameters of which are de-
tailed in Table 1. The first two functions, a band-pass fil-
ter and a smoothing function, were performed before train-
ing. During training, the last two processes were applied
every time a sample was taken from the training set. The
DataLoader class in Pytorch allows for in-place transfor-
mation of the data, such that the training data is not per-
manently altered during training. The first in-place trans-
formation is the addition of Gaussian random noise to the
input sample. This applies zero-mean unit-variance gaus-
sian noise to the entire 22 x 1000 training sample. The noisy
sample is then fed into a random erasing method, whereby a
random rectangular mask of the input sample is set to zero.

Section 3.1 of this paper includes a study which com-
pared the performance of deep learning architectures with
and without input data preprocessing.

2.2. Details on Training Procedure
After preprocessing the EEG data as described in the sec-

tion above, we annealed through different values of each hy-
perparameter and settled with a learning rate of 0.0005, ε =
1e−08, β = {0.9, 0.999}, and a weight decay of 0.0005
for an Adam with cross-entropy loss optimizer, which was
chosen empirically. For a fair comparison across all differ-
ent architectures, we used the same hyperparameters during

1



Table 1. Pre-Processing Pipeline
Stage Process Parameters

1 Band-pass filter
order = 3
fLP = 56
fHP = 240

2 Smoothing window = ′hanning′

window size = 5

3 Gaussian Noise µ = 0
σ = 1

4 Random Erasing aspect = 1:40
scale = 2-8 %

the training of each model using a batch size of 32 for 100
total epochs. As we used a modified version of the CNN ar-
chitecture as described in [5], we mainly used exponential
linear unit (ELU) activation functions; however, we chose
to use rectified linear units (ReLU) activation functions in
the subsequent fully-connected layers as they are known
to be empirically more performative. We trained all mod-
els using Google CoLaboratory’s provided NVIDIA 1080Ti
GPU. We note here that although a higher training accuracy
could have been achieved with a lower learning rate and ad-
ditional epochs, we chose to use a higher learning rate in
the interest of time.

The model architectures are given in Tables 3 - 7. Data
characteristics of EEG signals like low SNR and tempo-
ral structure make learning features more difficult than for
static images CNNs are typically most successful on. The
design of the CNN architecture was largely inspired by [5].
Schirrmeister et al. took these factors into consideration in
the design of their Deep ConvNet architecture. The main
modifications to this architecture were in the first convo-
lutional block, where we replaced the single 25 x 44 con-
volutional kernel with two 3 x 3 kernels and a single 18
x 1 kernel. It was thought that adding more convolutions
with smaller strides would aid in feature extraction; spe-
cific layers and kernel sizes were determined empirically
by trial and error. All architectures were cascaded with
an FC to classify the EEG features into a gesture. Out-
puts from the convolution/pooling and RNN-specific archi-
tectures were input to a deep FC to improve learning us-
ing methods such as batch normalization and dropout layers
in order to decrease hyperparameter sensitivity and further
regularize data, respectively.

3. Results
3.1. Preprocessing Effects on Performance

The results reported in Table 2, with the exception of
Subject 1, were generated using preprocessed training data
according to the pipeline described in Section 2.1. The
dataset corresponding to subject 1 was chosen for a com-
parison study assessing the effects of preprocessing. Par-
enthetical results in Table 2 (corresponding to label “1”)
indicate training data was input without using the prepro-

Figure 1. The training and validation loss/accuracy plots of Subject
1 using our cascaded CNN-LSTM architecture with preprocessing
and data augmentation across 100 epochs.

Figure 2. The training and validation loss/accuracy plots with all
subject data using our cascaded CNN-LSTM architecture with pre-
processing and data augmentation across 100 epochs.

cessing pipeline. It is clear from results that preprocessing
has a significant positive impact on classification accuracy.

3.2. Decoding Performance
In order to test the relative performance of the neural net-

work architectures described in Section 2, all models were
trained and tested on the EEG dataset with fixed hyperpa-
rameters for consistent evaluation. To evaluate performance
as a function of architecture, we study test set accuracies be-
tween subjects and across all subjects. Each row of Table 2
(corresponding to labels “1-9”) contains the results from a
subject-specific subset of the EEG dataset. Data specific to
a single subject was used to train each of the architectures in
these experiments. The final row of Table 2 (corresponding
to label “All”) contains the testing accuracy for each archi-
tecture trained across all subjects. Results corresponding to
best performance are highlighted with bold text.

3.2.1 Individual Architectures

Referring to individual architectures in Table 2, with the ex-
ception of subject 4, the CNN model performed the best for
both the individual subject experiments and across all sub-
jects. In experiments corresponding to subjects 6 and 7,
the CNN model had the best performance over all architec-
tures with testing accuracies of 47 % and 50 % respectively.
While we expect the LSTM and GRU models are suitable
for temporal data, the deep CNN architecture was still able
to extract key features better. The batchnorm and dropout
layers within the CNN architecture aided in model gener-

2



alization, while it was observed that at approximately 60
epochs the LSTM and GRU training accuracies were con-
verging to high values close to 1. Increasing batch size
helped reduce the issue, however larger training sets would
have also helped. Between the GRU and LSTM architec-
tures, performance varied. This is expected given results
from literature.

3.2.2 Cascaded Architectures

Referring to Table 2, we see that in general, the
CNN+LSTM architecture is most optimized for EEG sig-
nal decoding. The CNN + LSTM model performed best in
6 of the 9 single-subject experiments. On the full dataset,
the CNN+LSTM and CNN+GRU performed similarly, with
testing accuracies of 53% and 54%, respectively.

An example experiment is shown in Fig. 1 for the CNN
+ LSTM architecture trained on subject 1. It is clear from
the loss plot in this figure and the parenthetical results in
Table 2 that data preprocessing was effective in improving
model generalization. The corresponding validation curve
in the accuracy plot further confirms this. The training and
validation accuracies measured across all subjects is shown
in Fig. 2. The large gap in loss and accuracy indicates that
the network is overfitting the training data. We imagine this
overfitting could be mitigated by more sophisticated data
augmentation methods given by VAEs and GANs.

4. Discussion
In this project, we analyzed various deep learning ar-

chitectures for a classification task using EEG signals and
determined that, on average, our cascaded CNN + LSTM
architecture outperformed the other four methods we com-
pared against. We observed that data preprocessing and
training data augmentation played a large role in the model
performance, in that for a single subject using our best ar-
chitecture, we could only achieve 48% accuracy without
preprocessing, whereas with our entire pipeline we reached
74% for the same subject. Additionally, we observed that
cascaded architectures (i.e., CNN+LSTM and CNN+GRU)
typically performed better than individual methods (i.e.,
CNN, LSTM, and GRU) on this dataset. This may be ex-
plained by an RNN’s ability to capture the temporal struc-
ture found within the ”downsampled” EEG signals via a
CNN that could increase the overall classification perfor-
mance, whereas a singular CNN would not see this tempo-
ral information and individual RNN’s may be overloaded
by the datasize of the raw input data from not using a CNN.

While the cascaded CNN+LSTM typically performed
better than the CNN+GRU architecture as expected, we
observed that the CNN+GRU method trained and inferred
much more efficiently as expected, given that the GRU con-
tains less parameters than an LSTM. Single-subject mod-
els were more performative than all-subject models as ex-
pected, but we were still able to achieve an above-chance
accuracy of 54% for all-subject classification via cascaded

architectures. There are, of course, other methods that we
could have tried in order to further increase performance,
and the below sections briefly describe two techniques we
attempted: VAE’s and GAN’s.

4.1. Additional Data Augmentation
4.1.1 Variational Autoencoders (VAEs)

This study included an attempt at augmenting the training
dataset using a VAE, which is designed to compress the in-
put image into a latent distribution which is easily sampled
to create simulated data. Four VAE’s were created, each of
which produced simulated data for a specific target. The
structure of the VAE’s encoder and decoder networks were
fully connected networks with a depth of three and a latent
dimension of 800. All four VAE’s were used to create an
additional simulated dataset, resulting in a doubling of the
total training data. n Figure 8 contains a sample from the
training set along with its corresponding output from the
VAE. It was clear from the reconstruction that the VAE did
learn some large-scale features of the input data. However,
some features were learned more clearly than others, and
the reconstructed sample was more sparse than the original.

Augmenting the EEG classification training set with
these VAE-simulated samples did not have an appreciable
effect on the performance of the best-performing architec-
ture. The emulated samples are promising, but further work
is needed to improve the performance of the class-specific
VAE.

4.1.2 Generative Adversarial Networks (GANs)

Inspired by [1] and [4] we decided to use Deep Convolu-
tional GAN to improve the performance of our convolu-
tional neural network.

Following the architecture mentioned in [1], the genera-
tor G(z) consists of strided 1-dimensional convolutional-
transpose layers, 1 dimensional batch norm layers and
ReLU activations. The output of the generator then went
to a tanh function. (This step is required as for GAN, we
normalized the data to be between [-1,1]).

On the discriminator side D(x), we had a binary classi-
fication network that took data with the same shape of EEG
signals as input and output whether the input was fake (cre-
ated by the generator network) or not. The architecture was
a series of strided 1-dimensional convolutional layers, 1 di-
mensional BatchNorm and LeakyReLU layers. At the end it
output the final probability as a Sigmoid activation function.

However, solving for the minimax optimization of GAN
(1), our generator’s loss did not converge zero, meaning the
network was not learning. We believe it’s due to our large
selected stride and dilation values. (Architecture mentioned
in Appendix 9). Given we got other methods to augment
data we did not further debug our GAN implementation.

3



References
[1] S. C. Alec Radford, Luke Metz. Unsuper-

vised representation learning with deep convo-
lutional generative adversarial networks, 2016.
https://arxiv.org/pdf/1511.06434.pdf.

[2] C. Brunner, R. Leeb, G. R. Muller-Putz, and A. Schlogl. BCI
Competition 2008 – Graz data set A. page 6.

[3] D. Foster, S. Kakade, and R. Salakhutdinov. Domain adapta-
tion: Overfitting and small sample statistics, 2011.

[4] Y. L. Qiqi Zhang. Improving brain computer inter-
face performance by data augmentation with conditional
deep convolutional generative adversarial networks, 2018.
https://arxiv.org/pdf/1806.07108.pdf.

[5] R. Schirrmeister, J. Springenberg, L. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and
T. Ball. Deep learning with convolutional neural networks for
brain mapping and decoding of movement-related information
from the human eeg. 03 2017.

4



Table 2. Model Comparison via Test Set Across Subjects - {After (Before) Preprocessing}
Subject CNN LSTM GRU CNN + LSTM CNN + GRU

1 0.56 (0.38) 0.38 (0.36) 0.44 (0.26) 0.74 (0.48) 0.70 (0.52)
2 0.42 0.36 0.36 0.38 0.70
3 0.50 0.36 0.42 0.74 0.72
4 0.20 0.40 0.32 0.44 0.42
5 0.38 0.34 0.34 0.40 0.40
6 0.47 0.39 0.35 0.35 0.35
7 0.50 0.36 0.38 0.48 0.38
8 0.44 0.38 0.38 0.62 0.62
9 0.43 0.34 0.36 0.64 0.66

All 0.38 0.29 0.29 0.53 0.54

Table 3. CNN Architecture

Block Function Size Parameter
Conv-Pool 1 Conv 1× 10 stride = 1

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 18× 1 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 2 Conv 25× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 3 Conv 50× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 4 Conv 100× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)

Fully-Connected Linear 200× 54 −
BatchNorm − momentum = 0.2

ReLU − −
Dropout − p = 0.4
Linear 54× 44 −

BatchNorm − momentum = 0.2
ReLU − −
Linear 44× 4 −

Table 4. LSTM Architecture

Block Function Size Parameter
LSTM LSTM 22× 64× 3 dropout = 0.4

Fully-Connected Linear 64× 54 −
BatchNorm − momentum = 0.2

ReLU − −
Dropout − p = 0.4
Linear 54× 44 −

BatchNorm − momentum = 0.2
ReLU − −
Linear 44× 4 −

Table 5. CNN + LSTM Architecture

Block Function Size Parameter
Conv-Pool 1 Conv 1× 10 stride = 1

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 18× 1 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 2 Conv 25× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 3 Conv 50× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 4 Conv 100× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)

LSTM LSTM 7× 64× 3 dropout = 0.4
Fully-Connected Linear 64× 4 −

5



Table 6. GRU Architecture

Block Function Size Parameter
GRU GRU 22× 64× 3 dropout = 0.4

Fully-Connected Linear 64× 54 −
BatchNorm − momentum = 0.2

ReLU − −
Dropout − p = 0.4
Linear 54× 44 −

BatchNorm − momentum = 0.2
ReLU − −
Linear 44× 4 −

Table 7. CNN + GRU Architecture

Block Function Size Parameter
Conv-Pool 1 Conv 1× 10 stride = 1

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 3× 3 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
Conv 18× 1 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 2 Conv 25× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 3 Conv 50× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)
Dropout − p = 0.4

Conv-Pool 4 Conv 100× 10 stride = 1
ELU − alpha = 0.9

BatchNorm − momentum = 0.2
MaxPool 1× 3 stride = (1, 3)

GRU GRU 7× 64× 3 dropout = 0.4
Fully-Connected Linear 64× 4 −

Table 8. Variational Autoencoder

Layer Function Size Parameter
1 Linear 22000× 4000 −

2.1 Linear 4000× 800 −
2.2 Linear 4000× 800 −

3 Linear 22000× 4000 −
4 BatchNorm 4000 momentum = 0.1
5 ReLU − −
6 Sigmoid − −

Figure 3. (Top) sample image from training set. (Bottom) VAE
reconstruction of the above signal.

Figure 4. The loss of the discriminator and the generator functions
of our GAN.

Table 9. DCGAN Generator

Layer Function Parameters {padding, dilation, size, stride}
1 TransposeConv {0, 0, 4, 4}
2 TransposeConv {1, 3, 4, 3}
3 TransposeConv {2, 3, 4, 4}
4 TransposeConv {2, 3, 4, 3}
5 TransposeConv {1, 3, 4, 3}

Table 10. DCGAN Discriminator

Layer Function Parameters {padding, dilation, size, stride}
1 Conv {1, 3, 4, 4}
2 Conv {2, 3, 4, 3}
3 Conv {2, 3, 4, 4}
4 Conv {1, 3, 4, 4}
5 Conv {0, 1, 4, 4}

Figure 5. Minimax Optimization Equation for GAN’s:

minmax V (D,G) = E[log(D(x)] + E[log(D(1−D(G(z)))]
(1)

6


