
Relational Reinforcement Learning for Lifelong
Multi-Agent Path Planning

Evan Czyzycki∗, Julian de Gortari Briseno†, Pehuen Moure‡, Amirali Omidfar§ and Ankit Ranjan¶
∗ University of California, Los Angeles

Email: eczy@cs.ucla.edu
†University of California, Los Angeles

Email: julian700@g.ucla.edu
‡University of California, Los Angeles

Email: pehuen@g.ucla.edu
§ University of California, Los Angeles

Email: omidfar@ucla.edu
¶ University of California, Los Angeles

Email: ankitranjan@g.ucla.edu

Abstract—Multi-agent path finding (MAPF) can be used to
streamline pickup and delivery tasks in warehouses through
optimal planning of agents. The concept of MAPF in a two
dimensional grid-world has been tackled for agents working to
collectively reach desired positions as fast as possible and has
had promising research. Fully decentralized planners trained
using reinforcement learning have seen considerable success
in recent years through two implementations, PRIMAL and
MAPPER. One unaddressed issue present in these algorithms
is difficulty in scalability and generalization. This work presents
the implementation of relational reinforcement learning on top
of previously successful algorithms to add ability to generalize
learning to similar grid-like environments.

I. INTRODUCTION

Amazon has developed a robot-driven package sorting cen-
ter where a set of holonomic robots navigate a warehouse
environment in order to move package from arbitrary locations
to other arbitrary locations 1. The problem of programming
agents to move objects from certain positions to others in a
continuous online fashion is often called multi-agent pickup
and delivery (MAPD). The computational aspect of this
problem wherein these robots must determine the optimal
path from their positions to other arbitrary goal positions
while obeying environment constraints is called multi-agent
pathfinding (MAPF). While much active research has been
done in this space, many approaches to this problem rely upon
exact pathfinding methods such A∗ which quickly becomes
prohibitively expensive as the state space and number of agents
increases. By using more powerful reinforcement learning
paradigms such as relational reinforcement learning [11], it
may be possible to achieve useful run-time performance while
avoiding the expensive computation of exact methods.

Our code can be found at the following GitHub repository:
https://github.com/eczy/warehouse-mapf.

1https://www.wired.com/story/amazon-warehouse-robots

II. MOTIVATION

The increased demand of MAPF systems in warehouse
robotics has shifted the focus to more recent methods that
deal with fully decentralized policies as a way to reduce the
complexity of the system and increase the scalability. However
a remaining concern is the necessity of high correlation
between training and test environments. Methods such as
PRIMAL [1] have clearly shown that agents trained in 70
x 70 grid environments perform quite poorly when tested
in grids of greater size. In this study we explore several
approaches which may address this limitation. We hope to
emphasize a new aspect of learning through which agents can
gain a more general understanding of their environments and
effectively apply it to unknown environments that they have
never visited before. Specfically, we investigate the addition
of relational learning to these MAPF approaches with the
expectation that the distributed agents will learn higher order
representations of their environments and therefore be more
capable of generalizing to new environments. Adding this
module to previously successful MAPF algorithms could show
an increase in performance via generalization, and conse-
quently scalability.

III. RELATED WORK

In this section we discuss previous work in the MAPF field
to present an understanding of the current state of the field
and areas for improvement. First we discuss centralized multi-
agent path finders, followed by decoupled multi-agent path
finders and lastly relational reinforcement learning.

A. Centralized Multi-agent Path Planners

In the standard MAPF formulation the solvers is tasked
with finding a feasible set of solutions for a given set of
agents with associated goals once. Solving the MAPF problem
optimally is NP-Hard [10]. Optimal one shot MAPF solvers
search over the joint space for all agents, and thus scale

exponentially with the number of agents of the system [6] [5].
Centralized sub-optimal (bounded) MAPF solvers are able to
dynamically increase the search space to provide reasonably
feasible solution, but also exponentially in run-time with the
number of agents [3]. In the lifelong multi-agent path finding
(LMAPF) formulation the problem becomes prohibitive as
the solver needs to be rerun frequently as different goals
have different completion times. The combination of high
computational costs with frequent need for re-planning has
lead to exploration for decentralized path planners.

B. PRIMAL

Researchers from the University of Carnegie Melon, Com-
monwealth Scientific and Industrial Research Organisation
(CSIRO), and University of Southern California (USC) have
developed a decentralized, partially observable algorithm that
uses imitation learning with reinforcement learning to solve
the MAPF problem. The agents imitate an expert implement-
ing a centralized conflict based search (CBS) [9] or centralized
ODrM* (operator decoupled recursive M*) [2] and alternate
with reinforcement learning that uses an asynchronous advan-
tage actor-critic (A3C) algorithm to learn single-agent decen-
tralized policy. A deep neural network is used to approximate
the policies, which is referred to as Pathfinding via Reinforce-
ment and Imitation Multi-Agent Learning (PRIMAL).

PRIMAL displayed success in showing that the decen-
tralized policy learned by each agent entails some degree
of cooperation with other agents, especially when adding to
the mix a series of penalties for uncooperative behaviour.
The addition of imitation learning also greatly speeds up
the process of training and builds on previously successful
planners like the above mentioned ODrM* and CBS. The
learned policy is capable of being applied to any number of
agents and therefore scalability is greatly improved upon as
well. As a result, the agents learn to take movements to favor
the whole team and not just themselves (Figure 2).

Fig. 1. Structure of PRIMAL’s hybrid RL/IL [7]

An extension to PRIMAL was then developed in the form
of PRIMAL2 [1], which expands the original formulation
to take into account lifelong scenarios and dense structured

environments. The dense structure resembles a maze and
wherein for all agents to reach their targets, they must develop
a highly cooperative policy. To achieve this, the observation
state is altered to include information about likely paths to be
taken by nearby agents (by using A*), and obstruction caused
by agents and obstacles.

Fig. 2. Additional observation channels in PRIMAL2 [1]

C. MAPPER

Researchers from the University of Carnegie Melon and
Tsinghua have developed a decentralized Multi-Agent Path
Planning algorithm with Evolutionary Reinforcement learning
(MAPPER) [4]. This work introduces the ideas of dynamic
obstacles (cooperative and non-cooperative), the utilization of
a global path planner to divide a long range planning problem
into short range segments and the use of an evolutionary
algorithm that eliminates bad policies and maintains good
ones. The division of long range to short range segments
increases the performance of reinforcement learning as the
rewards are not as sparse. This algorithm utilizes a Convolu-
tional Neural Network (CNN) with max-pooling that receives
observation data in the form of multiple channels. This is then
fed into the advantage actor-critic (A2C) network along with a
goal position. Finally, the evolutionary training method greatly
increases scalability and stability during training, especially
where the number of agents grows, as the environment be-
comes more complicated and variance of the gradient grows
exponentially (Figure 3).

Comparing this to other similar work like PRIMAL [1]
shows that the training time is greatly reduced because of
decentralized training. MAPPER uses decentralized training
to learn decentralized policies, whereas PRIMAL uses cen-
tralized training to learn decentralized policies.

D. Relational Reinforcement Learning

Relational Reinforcement Learning (RRL) improves the
efficiency, generalization capacity, and interpretability of con-
ventional approaches through structured perception [11]. It
utilizes self-attention (similar to transformer networks) to learn
the higher-order relationships between entities in the environ-
ment and guide a model-free policy. It enhances baselines
in terms of sample complexity, the ability to generalize to
more complex scenes than experienced during training, and
overall performance. A part of RRL’s contribution comes from
non-local computations using a shared function and itera-
tive computation. As indicated in [11], an agent computing
pairwise interactions between entities, independent of their
spatial proximity, using a shared function, will be a better

Fig. 3. MAPPER Algorithm (Evolutionary Elimination)

Fig. 4. An MHDPA step used in Relational Deep Reinforcement Learning

option for learning important relations than an agent that only
computes local interactions. To deploy and compute non-local
interactions, in [11] they chose a computationally efficient
attention mechanism, assuming there exists a set of entities
for which interactions must be computed, and Multi-Head Dot-
Product Attention (MHDPA), or self-attention was utilized as
the operation that computes interactions between these entities
(Figure 4).

IV. FORMULATION

A. State Space

The environment can be represented as a matrix, since the
robots travel in a equally distributed grid pattern on the floor.
Let G represent the matrix in which the robots move. Each

point in G can have a corresponding ”type” for every point
on the floor: {p, d, t, o} corresponding to pickup point, drop
off point, obstacle, and travel point correspondingly. G will be
represented as a matrix. An example of G(3,3), with a pickup
on the top left corner and a drop off on the bottom right corner
can be seen below:

G =

p t t
t o t
t t d

Using this environment setup we can define the state space

to be the representation of all the drives on the floor and
their current location. Let st be the state of the floor at any
given time t; it will also be represented as a matrix of size
2 ∗ R(|G|,|G|). For st, let the first set of inputs be denoted as
S1. All S1 can be defined with an integer z ∈ Z being used if
there is a robot z at a given (i, j), a −1 if there is an obstacle,
and a 0 being used otherwise. Thus the full S1 can be defined
as:

S1 =

z 0 0
0 −1 0
0 0 0

 ,

0 z 0
0 −1 0
0 0 0

 ,

0 0 z
0 −1 0
0 0 0

 , · · ·

Let the second entry of the state matrix be denoted as S2.

This sub-state represents each robot’s current goal locations,
thus it will refer to an index i, j for all |G > 0| and a goal
destination. An example S2 for a single drive who’s goal is to
move to bottom right can be seen below:

S2 =

· · · ,
 [3, 3] None None
None None None
None None None

 , · · · ,

Then the full state can be represented as:

st = {[Sit, Sjt]∀Sit ∈ S1, Sjt ∈ S2}

B. Observation Space

The observation space consists of the information each agent
receives at each time step. Since this is a fully observable grid
world, each agent observes the entire state including all agents,
obstacles, and goals. The representation shown here allows for
compatibility with existing work in the MAPF field [7] [1] [4].
The observation space consists of multiple channels from the
point of view of the agent z, that describe the position of
agents or position of goals. Up to 5 channels may be used in
total at time t for each agent z:

Ozt = [Ozt1, Ozt2, Ozt3, Ozt4, Ozt5]

Ozt1 = Agent z’s channel: NxN matrix showing the coor-
dinate of agent z at time step t.

Ozt2 = Other agents channel from agent z’s point of view:
NxN matrix showing the coordinate of other agents from agent
z’s point of view at time step t.

Ozt3 = Goal channel: NxN matrix showing the coordinate
of the goal of agent z at time step t.

Ozt3 = Other agents goal channel: NxN matrix showing the
coordinates of the goals of the other agents at time step t.

Ozt5 = Obstacle map channel: NxN matrix showing the
coordinates of static obstacles at time t. This is mainly used
for compatibility reasons.

These channels are the input to a CNN layer which then
feeds into the rest of the network architecture.

C. Action Space

At every given time step each of the agents can choose one
of five actions, move up, down, left, right, or no action, thus
the set of all possible actions can be defined as:

A = {Up,Left,Down,Right,Wait}

In the implementation, the action space is enumerated with,
Right = 0, Up = 1, Left = 2, Down = 3, and Wait = 4. In the
case that the chosen action cannot be taken due to interference
from obstacles or other agents, the wait action is taken instead.

D. Transition Probabilities

In our formulation the transition probabilities for an ac-
tion that would not cause a collision and are in-bounds are
deterministic. For sake of brevity let us define a two helper
function: 1.) Unoccupied, which has as input the state at t−1
and ai and returns if the new location is not occupied; and 2.)
Compass which yields of output state st when applying ai
to st−1:

P = {p (st|st−1, ai) =

1 if:

Unoccupied(st) = True,
Compass(st−1, ai) = st

0 otherwise

E. Rewards

Let the rewards be defined as follows, inspired by [7] and
[4]:

Reward Value
Move -0.3

No movement off goal -0.5
No movement on goal 0.0

Oscillation penalty -2.0
Goal 20.0

By having a small negative reward for movement, the
agent is incentivized to reach the goal quickly. This also
means a greater negative reward should be associated with no
movement off goal, to avoid the agent staying in its place, and
an even greater penalty is used to avoid an oscillation motion
whereas the agent moves one step forward and one backward,
in a sequential manner. This is mild reward shaping and it is
done with the intent that the agent learns faster from constant
feedback, reducing training time. However, reward shaping can
heavily negatively influence the discovery of novel policies. To
combat this, a large reward is achieved for reaching the goal
state.

V. METHODS

A. Environment Setup

To see the effect of RRL on some of the existing MAPF
algorithms discussed above, we first created a 2D grid simu-
lation of the warehouse environment. To simplify the training
and deployment we considered deterministic transition proba-
bilities with a fully observable state space. We constraint the
agents to non-diagonal actions. Additionally our environment
has static obstacles.

Because of computational constraints, four agents were
utilized in a reduced grid of 11x11 and minimal obstacles.
There were a few modifications we added to each algorithm
to make it compatible with our environment. For example, in
the case of the PRIMAL network, we also needed to compute
a unit vector pointing towards the goal of each agent based on
their current state, as well as the Euclidean distance towards
the same goal, so as to use this information as input to the
corresponding network.

B. Relational Reinforcement Learning Architecture Design

To determine the effect of introducing relational architecture
to MAPF algorithms, we compare the performance of PRI-
MAL both with and without relational modules on our ware-
house environment. The non-relational PRIMAL architecture
is identical to the architecture defined in [8]. The relational
PRIMAL architecture is similar. We add a single relational
module using multi-headed dot-product attention as defined
in [11] before the first max-pooling layer of the original
architecture. All other layers are unchanged.

The structure of this relational module as it is defined in
[11] can be seen in Figure 4. The relational module receives
an input from some set of feature extraction layers which
is considered to be the set of entities E on which relations
can be learned. This set of entities is then passed through a
multi-head dot product attention (MHDPA) layer which learns
the relations between these entities. Finally, a 2-layer dense
network is applied in parallel to the output of this layer in
order to produce updated entities Ẽ.

C. Training

Each algorithm was trained on an NVIDIA GeForce RTX
2080 SUPER with an Intel i7 processor with the parameters
listed below.

1) Centralized Relational Agent: We train our single cen-
tralized RRL agent using advantage actor critic (A2C) for 2e7
iterations and an initial learning rate of 7e − 4. We use a
discount factor of 0.99 and an episode length of 200.

2) Relational and Non-relational PRIMAL: We train our
distributed PRIMAL agents using advantage actor critic (A2C)
for 2e7 iterations and an initial learning rate of 2e − 5. We
use a discount factor of 0.95 and an episode length of 256.
We set the IL/RL training split to (20/80).

VI. RESULTS

For evaluation purposes we compare the standard PRIMAL
implementation to the performance with the relational module.
As a baseline we compare our results to the standard bounded
closed form solver in ODrM∗ and a single centralized RRL
agent.

Due to a server crash, we were only able to retrieve results
for a few different training scenarios on PRIMAL (referred to
here as baseline model) and PRIMAL with RRL. The results
are shown below: The outcomes of our training are presented
in two categories:

1) The accumulated reward per episode
2) The number of targets (goals) reached per episode
PRIMAL Baseline Results

Fig. 5. Baseline PRIMAL reward per episode

Fig. 6. Baseline PRIMAL targets reached per episode

PRIMAL with RRL Results

Fig. 7. PRIMAL with RRL reward per episode

Fig. 8. PRIMAL with RRL targets reached per episode

As shown in the plots above, PRIMAL with RRL tends
to follow a smoother curve in improving its performance and
optimizing the policies taken. However observation is only

made over very limited data, and as it is, we cannot make any
conclusions about the effect of our changes to the PRIMAL
algorithm. We do observe a difference between the two curves
which may indicate that longer running experiments might
yield interesting results.

VII. DISCUSSION

Had our results been successfully collected, we would have
first examined the training curves and cumulative reward
between the relational and non-relational PRIMAL models.
Then, we would have examined the zero-shot generalization
of both approaches by examining the performance of both
models on larger/more complex environments.

Whether we find that the relational module improved or did
not improve the performance of the PRIMAL algorithm, we
would have examined the relational module of the relational
PRIMAL agent in order to analyze the relationships learned
in the environment, similar to the analysis done in [11]. We
would have hoped to find relations learned between each agent
and other agents as well as between each agent and its goal
state. If our results implied that the relational module did not
improve performance, then this analysis could potentially show
why the agent was acting non-optimally.

We would then examine the performance of each algorithm
on worst-case environments. Specifically, these environments
include those in which agents are most likely to collide or
obstruct each other. We would have hoped to observe an
improved worst case performance in the relational PRIMAL
method. As above, we would examine the relational modules
to determine the relationships learned in the relational agent.

Finally, we would report training and inference runtime
statistics between relational and non-relational methods.

VIII. FUTURE WORK

Due to computational constraints and time constraints, our
study was limited to smaller state spaces and agent counts. In
the future, we hope to evaluate our approach on more powerful
hardware that would allow us to experiment with larger
environment sizes and larger environment counts. This might
provide us a better baseline for the capability of the algorithm
and the effects of the relational module at scale. One shot
learning could be used to assess generalization ability, similar
to the analysis found in [11]. Furthermore, we are interested in
analyzing the performance of this approach in more difficult
environments such as those with dynamic obstacles, non-
deterministic state transitions, noisy sensors, etc. Similarly,
another avenue for future work is to consider a continuous
space warehouse and implementing our approach with this
fashion. This would reduce the dependency of our approach
on a discretized environment, which might be too difficult for
many practical approaches. Finally, we are interested in evalu-
ating the benefits of relational reinforcement learning in fully
distributed systems. PRIMAL and MAPPER are only semi-
distributed since they both rely on a central planner. Would
relational reinforcement learning improve the performance of

the distributed portions of these systems enough to omit the
central planner?

REFERENCES

[1] Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti.
Primal2: Pathfinding via reinforcement and imitation multi-agent learn-
ing – lifelong, 2020.

[2] Cornelia Ferner, G. Wagner, and H. Choset. Odrm* optimal multirobot
path planning in low dimensional search spaces. 2013 IEEE Interna-
tional Conference on Robotics and Automation, pages 3854–3859, 2013.

[3] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham,
T. K. Satish Kumar, and Sven Koenig. Lifelong multi-agent path finding
in large-scale warehouses, 2020.

[4] Zuxin Liu, Baiming Chen, Hongyi Zhou, Guru Koushik, Martial Hebert,
and Ding Zhao. Mapper: Multi-agent path planning with evolutionary
reinforcement learning in mixed dynamic environments, 2020.

[5] Hang Ma, Craig Tovey, Guni Sharon, T Kumar, and Sven Koenig. Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem. 02 2016.

[6] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Satish Kumar, and Sven
Koenig. Feasibility study: Moving non-homogeneous teams in congested
video game environments, 2017.

[7] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish
Kumar, Sven Koenig, and Howie Choset. Primal: Pathfinding via
reinforcement and imitation multi-agent learning. IEEE Robotics and
Automation Letters, 4(3):2378–2385, Jul 2019.

[8] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish
Kumar, Sven Koenig, and Howie Choset. Primal: Pathfinding via
reinforcement and imitation multi-agent learning. IEEE Robotics and
Automation Letters, 4(3):2378–2385, Jul 2019.

[9] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40 – 66, 2015.

[10] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal
multi-robot path planning on graphs. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, AAAI’13, page
1443–1449. AAAI Press, 2013.

[11] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia
Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Ed-
ward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu,
Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Relational deep
reinforcement learning, 2018.

