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Graspiot: Sensing Microgestures When Grasping Everyday Objects

ANONYMOUS AUTHOR(S)∗

As an Internet of Things (IoT) become pervasive in our environment, there is an increased need to enable always-available

IoT control without disrupting people’s day-to-day tasks. As a promising solution, microgestures provide a class of ubiquitous

and subtle interaction with small-scale movement of a user’s fingers. However, existing implementation primarily focuses

on extrinsic solutions where microgestural interaction is limited by the sensors’ line of sight and mobility. We proposed an

intrinsic approach—using surface electromyographic (sEMG) signals from an off-the-shelf wearable armband—to classify

a vocabulary of microgestures elicited by prior work. Importantly, our approach allows a user to perform microgestures

while grasping a physical object, e.g., squeezing a bike handle to play/pause music, tapping on a button-less stylus to switch

tools in a painting app, sliding the thumb when lifting a heavy box to open an automatic door. Our main contribution is

the architectural design of a neural network that employs (i) multi-task learning to imbue a microgesture classifier with

knowledge of grasp types so that the same gesture can be robustly recognized across grasping a range of physical objects,

and (ii) an attention mechanism that teaches classifier ‘where to look’ in order to capture the subtle microgestural pattern

when processing a long sequence of input sEMG signals. We report a series of experiments to validate the performance of our

approach and a user study where participants customized various ways of mapping microgestures to a range of interactive

applications.

CCS Concepts: • Computer systems organization→ Embedded systems.
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1 INTRODUCTION
An Internet of Things (IoT) continues to populate our environment, from personal computers, to intelligent

appliances, and even to interactive furniture
1
. Ericsson Research projected a world with 29 billion connected

devices by the year 2022
2
.

Two major challenges arise with the pervasiveness of IoT devices: (i) Ubiquity—how to enable distributed,

always-available control of these devices regardless of where they are located relative to the user? (ii) Subtlety—
how to prevent interacting with these many devices from depleting users’ attention and interrupting their focused

activities?

Existing approaches often fall short in addressing these two challenges. An app-based approach mobilizes

interaction to a portal device (e.g., smart phone), yet it is often interruptive to retrieve the device and navigate to

a specific control app. Voice assistants (Amazon Alexa, Google Assistants, Apple Siri) can be always available but

having to speak out commands lacks subtlety on certain occasions e.g., meetings.

1
https://interactivefurniture.de/en/

2
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
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a b c d
Fig. 1. Graspiot contributes an intrinsic sEMG-based approach repurposing an off-the-shelf armband to enable microgestures–
elicited by Sharma et al. [57]–even when the user’s hand is holding other objects, e.g., advancing slides without using a
clicker (a), opening an automatic door while holding heavy boxes (b), tapping on a button-less stylus to switch drawing color
(c), and squeezing the bike handle to play/pause music (d)

To achieve both ubiquity and subtlety, microgestures emerge to be a promising solution. Microgesture is a

class of gestural input that involves small-scale finger movements, e.g., rubbing the thumb and the index finger

against each other. There have been a number of studies that elicit the variety of microgestures a user would

perform [13, 57] and how well they can perform such gestures [27]. We are interested in microgestures that can

be performed as a user is grasping and manipulating an object [57], which represents a more ubiquitous and

subtle interaction scenario by dispensing with the need to free the gesturing hand at the present task.

In the meantime, implementation of microgestures has been somewhat focused on extrinsic solutions, e.g., using
externalmm-wave radio [43] or pyroelectric infrared [30] transceivers. The problem is that extrinsic sensing

limits the availability of microgestures to the sensors’ line of sight; further, the mobility of the user is somewhat

dependent on that of the sensors.

The goal of our research is to enable always-available, ubiquitous and subtle microgesture interaction with

IoT devices while the user’s hands are grasping or manipulating everyday objects (Figure 1), e.g., squeezing a
bike handle to play/pause music, tapping on a button-less stylus to switch tools in a painting app, sliding the

thumb when lifting a heavy box to open an automatic door. To achieve this goal, we build upon Chan et al.and
Sharma et al.’s elicitation studies and contribute an intrinsic approach of recognizing microgestures from surface

electromyographic (sEMG) signals [57]. Specifically, our approach recognizes seven microgestures—select, accept,

reject, next, previous, increase and decrease—applied on six different grasp types—cylindrical, palmar, hook,

lateral, tip and hook. We choose sEMG because of the intrinsic correlation between gestures and muscle activities,

and also because sEMG signals can be measured unobtrusively from forearm muscles as a wearable device.

Previously, sEMG signals are used for different recognition tasks including grasp type and hand gesture

recognition. Both traditional sEMG based hand gesture and grasp type recognition systems use hand crafted

feature sets [15, 16, 35]. Some of these discriminative feature sets require domain knowledge [21, 24, 33, 39, 51]

and is subject to excessive parameter tuning. Deep learning architectures can learn relevant features for a given

task with a data-driven approach. Recently, deep learning based solutions gained popularity in sEMG based

hand gesture recognition. Specifically, convolutional neural networks (CNN), has been exploited in sEMG based

hand gesture classification with great success [3, 28, 31, 66]. Although, sEMG signals are primarily used for hand

gesture recognition, whereas it remains relatively unknown whether and how to recognize subtle and ephemeral

microgestures using sEMG.

The main challenge of classifying microgestures while grasping everyday objects is that the user’s grasp

inevitably affects the performance of the microgestures, adding variances to the sEMG data that could potentially

degrade a recognizer’s performance. Further, the segmentation problem is exacerbated, as microgestures are

often very subtle and ephemeral, making it difficult to detect its onset, i.e., at which point a microgesture occurs

given a sequence of signals.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Fig. 2. Workflow of Graspiot. Graspiot uses raw sEMG signals and makes a micro-gesture prediction. It utilizes convolutional
neural network (CNN) - recurrent neural network (RNN) architecture, attention mechanism and multi-task learning. CNN-
RNN component encodes the given signal. Attention mechanism allows Graspiot to focus on informative section of the signal
and multi task learning allows Graspiot to account for variances caused by interacting with objects.

We present Graspiot, an sEMG-enabled microgesture recognition system that employs a deep neural network

with two architectural improvements to address the aforementioned challenges.

To address microgestural variances caused by different grasps, we employ a multi-task learning architecture,

wherein a latent space is developed to jointly learn both recognizing a grasp type [45, 56] and recognizing a

microgesture. In this way, the resultant model would have to rely on features that are indicative to both grasp

and microgestures, thus able to robustly recognize or distinguish the same gestures associate despite the variance

caused by difference of grasp type.

To address the segmentation problem exacerbated by microgestures’ subtlety and ephemerality, we first

introduce an activation gesture—a wrist extension motion (wave right) [54]—for a user to signal the imminence

of a microgesture. Following the activation gesture, an empirically-defined time window of 1.5 seconds of signal

is collected, which contains data of a user’s microgesture. However, given our eight 200-Hz sEMG sensors, even a

1.5 second window produces a long sequence of data that is often difficult to learn by modern neural networks.

To solve this problem, we employ an attention mechanism, which allows latent variables representing different

parts of the window to be combined, and the model learns higher weights for parts that are more relevant to a

microgesture. In other words, such an attention mechanism teaches the recognition model ’where to look’ in a

long sequence of data to search for a subtle and ephemeral microgesture. The workflow of Graspiot is shown in

Figure 2.

We conduct three sets of experiments to validate our approach. All of these experiments are done with cross-

validation, indicating how well our solution generalizes for different participants. A final user study is conducted

to highlight the usability and the practicability of our approach. The first set of experiments compare our model’s

performance with previous deep learning models that are introduced for hand-gesture classification. Graspiot

improves accuracy by 30% over previous deep learning models with 77.63% accuracy on our offline dataset and

75.81% accuracy on real time user study. The second set of experiments show the source of gain of our model

with respect to its different parts. The third set of experiment shows how well our method generalizes beyond the

objects that are used in this study. When different objects are considered, Graspiot achieves a similar performance

of 77.78% accuracy.

1.1 Contributions
Our contributions are as follows:

• Graspiot—a system for sensing microgesturing while grasping everyday objects based on sEMG from

off-the-shelf wearable hardware that goes beyond the limitations of extrinsic approaches (e.g., line of sight,
mobility);

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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• A multi-task learning approach using a grasp type classifier as an auxiliary task to the original task of

recognizing microgestures, thus imbuing the model with knowledge of both grasping everyday objects and

microgesturing;

• An attention mechanism that teaches the recognition model ‘where to look’ in a long sequence of data to

search for a subtle and ephemeral microgesture;

• A data set containing 4752 instances of 7 microgestures on 12 different objects by 12 participants, which

enables future research to continue developing microgesture-based computational models or interactive

applications.

1.2 Limitations
Currently, our work has the following limitations:

• The activation gesture (currently by extending the wrist) adds an extra step and cognitive load for a user

to perform a microgesture—in the scope of this paper we chose to focus on sensing microgesture as an

investigation independent of the activation mechanism;

• The empirically-defined 1.5s window adds delay, as the model will always wait for 1.5s of signals before

starting processing data;

• We focus on classifying one microgesture at a time and have not enabled continuous or consecutive

microgestures;

• In choosing and instrumenting sEMG sensors, we trade off precision for practicality: we chose a commer-

cially available, limited-precision rather than a medical-grade, high-precision device as a constraint for our

method so that it can be available to a wider set of audience.

2 RELATED WORK
Our work is related with 3 areas of prior work: (i) elicitation and sensing techniques that includes single-handed

microgestures; (ii) sEMG based input sensing; and (iii) deep learning based classification of sEMG signals.

2.1 Single-hand Microgestures
There are some prior elicitation work regarding micro-gestures. Wolf et al.interviewed people what kinds of

microgestures would be appropriate and undisruptive to perform as a secondary task during manual work, and

accordingly developed a taxonomy and 21 microgestures that can be appropriately performed during a manual,

multi-tasking context [62]. Chan et al.conducted an elicitation study focusing on single-hand microgestures and

contribute an analysis of 1,632 gestures with high-level themes that guide the use of these microgestures for

interaction design [13]. Perhaps most related to our research is the study conducted by Sharma et al.with a focus on
eliciting one-handed gestures while grasping physical objects, which both contextualize and constrain the types

of gestures a user would perform [57]. Freeman et al.investigated rhythmic microgestures–micro-movements of

the hand that repeat in time with a rhythm and found that users could perform such gestures with high success

rate [27]. Collectively, these studies formulated an area of research on designing microgesture.

When it comes to implementation, there are different sensing solutions previously developed for microgestures.

FingerPad used a magnet and hall sensor to enable pinch gestures between a thumb tip and the index finger,

thus allowing for private and subtle interaction [14]. Endres et al.investigated the use of electric field to sense

microgestures in the car, including where to position and orient the sensor, algorithms that performs the

recognition as well as justifiable application domains [25]. Project Soli was an end-to-end effort from designing

a low-power radar chip that emits millimeter wave to detecting microgestures with high-resolution, high-

throughput and of a large, expressive vocabulary [43]. Gong et al.repurposed pyroelectric infrared sensors to detect
close-ranged thumb-tip microgestures [30]. FingerInput was a design space of thumb-to-finger microgestures

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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and implementation based on a body-worn depth-camera and CNN to accurately detect both position and flexion

[58]. Boldu et al.evaluated a thumb’s gestures on a ring device that enables access to information during athletic

activities, which is an extrinsic solution since the user needs to touch the ring and is limited by its sensors [9].

2.2 sEMG-based Input Sensing
EMG signal measures the activity of skeletal muscles [46]. A type of EMG, called surface EMG (sEMG), is measured

with electrodes that are placed on the surface of the skin above the muscle [20]. sEMG signals were used for many

different sensing problems such as face emotion detection [5], grasp recognition [35, 49], hand gesture recognition

[3, 28, 31, 66], simultaneous movement [65], speech recognition [60], etc. Early sEMG based recognition systems

used hand-crafted features and traditional machine learning algorithms [41, 47, 55]. In this work, we are mostly

interested in hand gesture and grasp type recognition systems. There were many works that recognizes grasp

types [10–12]. Besides grasp type recognition, there has been extensive work on hand gesture recognition using

sEMG signals [1, 7, 8, 38]. Many of these works proposed different feature sets over the years. Ferguson and

Dunlop used wavelet decomposition, short-time Fourier transform (STFT) as features and the prediction is made

by a fully connected layer to predict four different grasp types [26]. Kakoty and Hazarika used discrete wavelet

transform, signal energy, zero crossing (ZC), turning point, mean absolute value, root mean square value and

variance to predict 6 different grasp types using support vector machine (SVM) [35]. There were also many more

different feature sets with comparative performance [32, 33, 44, 59].

Since there are many different proposed feature sets, there has been some interest in analyzing these feature

sets. Kakoty et al.compared continuous wavelet transforms with discrete wavelet transform to find a better hand

crafted feature set [37]. In a similar work, it was shown that time-frequency domain features performs the best

out of previously introduced feature sets [36]. All of these works utilized their own dataset and required users to

provide data for training their algorithms. As a result, accuracies varied a lot from study to study. However, the

extensive feature set introduced by Phinyomark et al.is accepted by many researchers [31, 40, 52]. We use the

same feature set and support vector machine (SVM) [18] as a baseline comparison to our data-driven solution in

Section 6.2. Using these feature sets require excessive parameter tuning and sometimes domain knowledge. This

led researchers to data-driven deep learning solutions in sEMG signal classification, which we review below.

2.3 Deep Learning Based sEMG Signal Classification
sEMG signal is vastly complex and it is influenced by many factors including sensor placement, muscle density,

fat tissues, etc [20]. In order to model these complex relationships, deep learning algorithms recently gained

popularity in sEMG based signal classification. Our work is related to prior deep learning research on sEMG

signals in three main categories: (i) sEMG-based applications that are enabled by deep learning; (ii) deep learning

based hand gesture classification using sEMG signals, which is most related to our work; (iii) architectural
improvements on deep learning models that use sEMG signals to classify hand gestures. Below we review the

first category.

Previously, sEMG signals were used for different tasks utilizing deep learning architectures. Xia et al.used
recurrent neural network (RNN) to estimate limb movement trajectory using sEMG data in time-frequency scale.

For this task, the RNN outperformed convolutional neural network (CNN) and support vector regression (SVR)

[64]. Zhai et al.used CNN for upper limb neuroprosthetic using sEMG spectrogram as a feature and showed

that it outperformed SVM [66]. There are similar works that predicted hand movements with CNN using raw

sEMG data, outperforming SVM [3, 50]. Wand and Schmidhuber used fully connected neural network for speech

recognition using sEMG data coming from articulatory muscles [60]. In that work, raw data was processed

with hidden markov model and resulting states were used for neural network training. Wand and Schultz has a

similar work where they visualize the input features [61]. Allard et al.used CNN for robotic arm guidance using

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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spectrogram of sEMG signal [2]. As it can be seen, sEMG deep learning research is heavily influenced by CNNs.

CNNs are exclusively used for sEMG-based hand gesture recognition as well which are reviewed next.

Atzori et al.used CNN for the first time for hand gesture recognition using sEMG signals [3]. They used fixed

input sizes and only achieved comparable performance with the traditional methods. Geng et al.used CNN for

gesture recognition using instantaneous sEMG data [28]. They showed that temporal dependency in the data is

not crucial for high performance, which coincides with the lack of solutions that use RNNs in the literature. They

showed that CNN outperforms standard feature extraction followed by SVM. After these two initial works, there

have been a lot of improvements on the CNN architectures for hand gesture recognition mostly by leveraging

the recent advancements in the deep learning area which we review next.

Du et al.enhanced inter-session recognition using domain adaptation framework which is influenced after

adaptive batch normalization [22, 42]. Zhai et al.proposed a self-calibrating CNN to maintain a stable performance

over time without the need of user retraining [66]. Rehman et al.compared stacked sparse autoencoders with CNN

for hand gesture classification and they concluded that CNN works better for the task [67]. Du et al.introduced
a semi supervised learning framework using CNNs to reconstruct temporal information present in the sEMG

data which is lost due to using instantaneous predictions [23], improving on [28]. Hu et al.[31] used attention

mechanism to be able to better combine separate instantaneous predictions from [28]. However, they found

out that attention mechanism only slightly increases the performance when instantaneous predictions are used.

Our work improves on both of these works —[23, 31]—, by not relying on instantaneous predictions, therefore

maintaining sequences and temporal information which can never be fully reconstructed with unsupervised

learning or attention mechanism.

3 UNDERSTANDING MICROGESTURE THROUGH THE LENS OF SEMG SIGNALS
In this section, we provide an analysis of microgestures’ signal characteristics, which directly motivates our

technical solutions described in the following section.

3.1 Different Grasps Cause Microgestural Variance
In this study, microgestures are considered while grasping everyday objects. This complicates the problem of

microgesture detection because the spatial and kinesthetic properties of the hand is affected by what object a

user grasps and how they grasp that object. For example, consider a very common microgesture of tapping one’s

index finger: in particular, the difference of performing this microgesture when holding a pen v.s. when carrying

a heavy shopping bag. The position, orientation and force of performing the same microgesture become quite

different. Grasping different objects might at times even change people’s ability to perform certain microgestures.

Sharma et al. discuss that a person’s thumb is more mobile while grasping a ball compared to a credit card, in

which case the middle finger is more mobile.

Related to sEMG, as certain objects require certain ways of grasp, we can expect similar but different muscle

activities and sEMG responses when performing the same microgesture while grasping different objects. Thus it

becomes challenging to address a seemingly large space of microgestural characteristics when performed on the

vast number of real-world objects. One way to make this problem tractable is to categorize ways of grasping

different objects: Schlesinger summarize six common grasp types, namely, cylindrical, palmar, hook, lateral, tip,

and spherical [56]. As such, to realize classifying microgesture while grasping an object, foremost we need to be

able to recognize how one microgesture is associated with different sEMG patterns affected by six grasp types.

3.2 Subtlety & Ephemerality Exacerbate Segmentation
It is previously argued that hand gestures can be recognized with instantaneous EMG signals, i.e. predicting each

single time step individually and using majority voting over time [28]. Using this approach, temporal dependency

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Fig. 3. Snapshots of select micro-gesture and its respective sEMG signal windows. Proposed solution needs to learn where to
focus and what characterizes a micro-gesture and order of changes in signal.

of the data is often ignored. By and large, such prior method can be attributed to the fact that sEMG-based

hand gesture recognition is enabled by distinguishing static hand configurations, e.g., American Sign Language

[6]. Even for gestures with motion (e.g., swiping left/right), the most significant indicator is not so much the

movement but rather the final ‘frame’ of the hand at the end of the movement. In contrast, the microgestures

we are interested at cannot be featurized by such static hand configuration; instead, these microgestures are

comprised of subtle and ephemeral motion. As such, a recognizer cannot rely on a specific static ‘frame’ in the

course of microgesturing, but must consider a sequence longer than a conventional hand gesture. For example,

Figure 3 shows the select microgesture and its corresponding sEMG response. Select microgesture starts with

the raise of the index finger, which is correlated to high sEMG signal response; momentarily later the finger is

lowered to perform a tap with EMG readings gets lower.

However, determining which sequence contains a given gesture is a long-standing problem called segmentation.

While microgestures by nature requires processing long sequence (as opposed to static frames), their subtlety

and ephemerality exacerbate the segmentation task, as the onset of a microgesture becomes much less distinctive

than, say, overt hand gestures. To make this problem tractable, prior work employs gesture registration [63] or

framing gesture [34] as ‘artificial’ delimiter for sequences of data pertinent to a gesture. For example, whacking a

device signals an upcoming gesture, where the system will start looking out for the gesture’s data pattern before

a preset time-out. However, even after extracting a sequence that contains a microgesture, finding the onset

remains a problem. As we require a high sampling rate of sEMG signal, even a 1s sequence contains hundreds of
data points multiplied by the number of electrodes: it is unclear ‘where to look’ amongst such a large number of

data points to find a subsequence associated with a microgesture.

It can be said that, previously in sEMG hand gesture classification literature, segmentation issue did not pose a

challenge. Whereas, segmentation and correspondingly temporal dependencies of microgestures are extremely

important for our model. This can be illustrated in figure 3, where the proposed solution should be able to

learn segmentation or where to pay ’attention’ on the long sequence. Previous gesture detection models are

implemented as baselines to highlight the limitation of them and the results are given at Section 6.2

To summarize, an sEMG-based approach to recognize microgestures while grasping objects should foremost

meet the following requirements:

• Recognizing correlations among the same microgestures performed while applying the six different grasp

types;

• Given a sequence of signals containing a microgesture, being able to identify the most indicative portion of

the sequence for a classifier to ‘look at’.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Before describing how our develop technical solutions to meet these two requirements, we first introduce how

we acquire data from the sEMG sensor hardware.

4 HARDWARE AND DATA ACQUISITION
Before we unfold the details of our microgesture recognition method, we first introduce the hardware and how

we used it for collecting sEMG data of participants performing microgestures while grasping a range of different

objects.

4.1 Hardware and Sensor Placement
We used the Myo armband

3
—a state-of-art hand gesture recognition product introduced by Thalmic Labs (now

North) in 2013. Myo senses sEMG signals at 200Hz and transmits data through a wireless protocol. The armband

has eight sEMG sensors distributed uniformly across the band and data communication is based on Bluetooth

protocol with a designated dongle. We chose this device because it provides an accessible platform (priced at

$199, much more affordable than medical-grade sEMG sensors). The device comes with built-in LED indicators

and an actuator to provide feedback.

The Myo armband was designed to be worn at the thickest part of forearm, just below the elbow. Through an

initial experiment, we located positions to best capture sEMG signals while performing microgestures. Specifically,

the armband is worn in a way such that the first sensor is placed on the radio humeral joint (figure 4), about

3cm away from the elbow. This placement can be easily identifiable: a user only needs to lay the arm flat on a

horizontal surface, shift the Myo to the 3cm point from the elbow and then rotate it so that the LED light is facing

sideways, away from the user, as shown in figure 4. Recognition is sensitive to the sensor placement, but not to

the level that a measurement unit is needed. During our experiments, users wore the armbands by looking at

images without any issues.

(a) Placement of first sensor: on radio humeral joint about
3cm away from the elbow.

(b) Placement of LED light: facing sideways away from the
user when the arm is flat on a surface.

Fig. 4. Myo armband placement from alternative angles.

4.2 Software
Our work is implemented on a Linux operating system (Ubuntu 16.04). The entire project is implemented in

Python and deep learning implementation is built upon the Tensorflow library
4
. There is an official software for

the armband on Windows, called Myo Connect. However, Myo Connect does not allow users to access to the

raw data. As a result, we use two different open-source libraries
5 6

which give access to raw sEMG data over

3
https://support.getmyo.com

4
https://www.tensorflow.org/

5
https://github.com/NiklasRosenstein/myo-python

6
https://github.com/Alvipe/Open-Myo
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Fig. 5. Graspiot builds on elicitation studies of [57]. Microgestures vary across different grasp types which belong to different
clusters. The three main clusters and nine microgestures are given in the figure (figure is from [57]). In this work, we do
not consider continuous microgestures: move and rotate. The remaining seven microgestures; select, accept, reject, next,
previous, increase and decrease are considered with the clusters.

Bluetooth for Windows and Linux respectively. We used these libraries to collect our dataset as described later in

this section. Once real-time gesture classification results are generated on the server, they are sent over a local

wireless network to an IoT device to trigger specific actions.

4.3 Data Collection
Twelve healthy subjects (10 males and two females) participated in the study. Before the experiment, each

participant was asked to wear the Myo armband on the aforementioned position and orientation. Due to wireless

connection, data packages can get lost or arrive late. Even though this was a rare occasion, the sampling rate was

monitored during experiments to make sure it is above 195 Hz at all times. For example during the entire user

study, we never faced this issue.

In this study, we decided to use seven micro-gestures introduced by Sharma et al.[57]: accept, select, reject,
increase, decrease, previous, and next. We also used six grasp types: cylindrical, palmar, hook, lateral, tip and

spherical. Sharma et al.clustered these grasp types into threemain clusters; grab, pinch and claw. Themicrogestures

and clusters can be seen in figure 5. As we piloted our data collection process, we found participants expressed

ergonomic difficulties performing a few microgestures with some grasp types, e.g., increase and decrease with

pinch, next and with claw. Thus, we decided to exclude these conditions. The final selection of microgestures per

each grasp type were shown in table 1.

For each of the six grasp types, we chose two objects with different sizes (table 1). For each object, we ask users

to perform the microgestures one-by-one in two different arm postures (figure 6): lifting the arm and resting the

arm on the table. After a short tutorial and some practice time to familiarize themselves with both microgestures
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Table 1. Objects, their corresponding grasp types, clusters and selected microgestures are given. Some microgestures caused
ergonomic difficulties among participants and therefore we limit the available microgestures based on the cluster the object
is in. (L) corresponds to large objects and (s) corresponds to small objects.

Cluster Grasp Type Object Name Microgestures
Accept Reject Select Increase Decrease Previous Next

Grab

Cylindrical

Marker Pen (s)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Vitamin Bottle (L)

Palmar

Post-it Notes (s)

Box (L)

Hook

Coat Hanger (s)

Backpack (L)

Pinch

Lateral

Credit Card (s)

✓ ✓ ✓ ✗ ✗ ✗ ✗A4 paper (L)

Tip Needle (s)

Claw

Tip Pencil (L)

✓ ✓ ✓ ✓ ✓ ✗ ✗
Spherical

Tennis Ball (s)

Camera Bag (L)

and grasp types, participants then followed visual instructions on a display to perform microgestures with specific

controlled conditions. Each time, a participant pressed a button using the non-gesturing hand, which started a 1.5s

data collection process while they performed the instructed microgesture. In a block of trials, participants went

through each grasp type, switched between two sizes of objects in two arm postures as they performed a (possibly

reduced) set of microgestures, producing 132 data points. To prevent fatigue, participants then took a 10-minute

break before continuing to the next block. In total, we collected 12 participants × 3 blocks per participant × 132

trials per block = 4752 data points.

(a) Lifting the arm. (b) Resting the arm.

Fig. 6. For each object, microgestures are performed in two different arm postures: lifting the arm and resting the arm.

5 METHOD
Graspiot is a hybrid network that consists of four main parts: a CNN, an RNN, an attention mechanism, and a

dual of classifiers as shown in (Figure 7). Given a sequence of sEMG signal, Graspiot divides it into d number of

smaller overlapping sequences. These sequences are then fed into the same CNN model separately to encode

each sequence into d encodings. Next, CNN output are sent to the RNN module where each encoding is passed at
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different time step. The resultant d RNN states are passed through attention layer that allows Graspiot to filter

on windows of signals on how informative they are. Graspiot uses two parallel attention layers for multitasking,

allowing it to focus on different windows based on microgestures and grasp types. With the attention information,

d RNN states are combined and both of the resultant two encodings (from two attention layers) represent the

entire signal. These two encodings are represented with zm and zg for microgesture and grasp type respectively.

The encodings are then sent to two respective classifiers that jointly address both microgestures and grasp types

via multitasking.

Preprocessing and Sampling We use raw sEMG data directly for classification. Although recent work [19]

shows improvement by preprocessing the raw data using continuous wavelet transform on hand gesture classifi-

cation, it increases the number of input channels significantly. Increasing the number of input channels requires

a bigger model, which is not feasible given the long sequences and the small dataset available. Thus, we use raw

sEMG data instead and the sEMG sequences are fed directly into Graspiot as explained below.

An initial long sequence is first divided into shorter sequences using sliding windows, which is part of the

attention mechanism that processes the output of the RNN module. Given a sequence x = x1,x2, ...,xt of length
t where xn ∈ Rp (p is the input dimension) for n = 1, 2, 3, ..., t , we take a sliding window approach to create

shorter fixed size sequences of length l using stride s which defines the amount of shift applied between windows.

As a result, d = [
t − l

s
] + 1 is the number of sequences that are extracted from the initial sequence where [·]

corresponds to floor operation. The last window is shifted less so that it has the same length with the others if

necessary. We represent sliding window outputs with X1,X2, ...Xd where Xt ∈ R
l×p

, we denote the concatenated

data matrix with X ∈ Rd×l×p , where we have d sequences with length l and dimension p. After sliding window,
X is given to CNN.

We use l = 52 (corresponds to 260ms of data) and s = 26 which is found with hyper-parameter optimization.

These values give us 10 windows for a sequence of 300 data points—1.5 seconds—which is empirically defined as

the time to apply a microgesture during experiments.

5.1 Feature Extraction with a Hybrid CNN-RNN Architecture
Our CNN which has eight layers. The input which comes from sliding windows have a size of 10 x 52 x 8 (number

of windows, window length, number of sensors). The parameters of the CNN can be seen at Table 2 which are

found with hyper-parameter optimization.

Table 2. Parameters of CNN module for Graspiot.

Layers Type Configurations Output Size Batch Activation
Normalization Function

1 1-D Convolution 64 filters, 1 x 8, stride 1 10 x 52 x 64 x 1 ✓ ✓
2 2-D Convolution 32 filters, 6 x 6, stride 1 10 x 47 x 59 x 32 ✓ ✓
3 2-D Convolution 32 filters, 6 x 6, stride 1 10 x 42 x 54 x 32 ✗ ✓
4 Average Pooling 4 x 4, stride 1 10 x 39 x 51 x 32 ✓ ✗
5 2-D Convolution 64 filters, 6 x 10, stride 2 10 x 17 x 21 x 64 ✗ ✓
6 Average Pooling 4 x 4, stride 2 10 x 7 x 9 x 64 ✓ ✗
7 2-D Convolution 256 filters, 6 x 6, stride 2 10 x 1 x 2 x 256 ✓ ✓
8 Fully Connected 256 outputs, 1 x 8, stride 1 10 x 256 ✗ ✗

We use one dimensional convolution filters for the first layer of CNN, which processes all of the initial sensor

data together. Our reason for using a 1-D convolution stems from our sensor placement. Myo Armband sensors
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Fig. 7. Graspiot network. It consist of a CNN, a RNN, an attention mechanism and dual classifiers. ht corresponds to hidden
state of the RNN for time step t andmt and дt correspond to tth sliding window attention weights for microgesture and
grasp type respectively. zm and zд correspond to encodings of the signal for multitasking.

form a ring whereas matrix representation of the data ignores sensor proximities. Therefore, filtering all of the

sensors together would reveal correlations that would otherwise be lost. The rest of the CNN module consists of

two dimensional convolution layers, average pooling layers and a final fully connected layer. Rectified linear

unit (ReLU) is used for activation function. Batch normalization is applied after ReLU. For each sequence, CNN

generates 10 encodings. After CNN, resulting encodings for each sliding window is given to RNN as input at

different time steps. We use gated recurrent units (GRU) [17], which is found through hyper-parameter tuning.

GRU has a hidden state dimension of 256, similar to CNN. GRU allows the network to extract temporal information

from CNN encodings. In other words, the ‘order’ of the CNN encodings are given to the network via recurrent

layer. GRU cell takes an encoding and a previous state to calculate its current state. The information about the

previous encodings is carried through these states, resulting in 10 hidden states which are denoted as ht for
tth time step. During training, dropout is applied to the output of GRU with 0.5 probability. The entire hybrid

CNN-RNN hybrid network can be represented with function fθ : Rd×l×p 7→ Rb . It takes a data matrix of d
sequences of length l with dimension p as input and generates a hidden state of RNN with dimension b (52, 8 and

256 in our setting respectively).

5.2 Attention Mechanism
In our work attention mechanism consists of two parts: (i) sliding windows and (ii) attention layer. These two

parts complement each other: attention layer decides which sliding windows should be given more ’attention’,

whereas sliding windows decide among how many choices (d number of windows) should the attention layer

make its decision. Thus, parameters of sliding windows are important to tune.

We already introduced sliding windows in the previous subsection. The second part, attention layer, is an

additive attention which is first introduced by Bahdanau et al.in order to align sentences while translating them

[4]. However, its use in sEMG classification literature has been limited. To the best of our knowledge only one

previous work utilizes attention in sEMG literature and in that work attention fails to improve accuracy [31].
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Graspiot is the first work where attention mechanism is successfully applied to the sEMG data. Moreover, in

our work, attention mechanism works across different subjects; generalizing much better than previous work

whose results across different subjects were not reported.

Using sliding window inputs (Xn) for n = 1, 2, ...,d , RNN hidden state hn for time step n can be calculated with

fθ (Xn). Attention layer combines these states with following equations:

Mn = tanh(Wmhn)

mn = so f tmax(wm
TMn)

zm =
d∑
n=1

mnhn

(1)

Gn = tanh(Wghn)

дn = so f tmax(wg
TMn)

zg =
d∑
n=1

дnhn

(2)

where Wm and wm are microgesture attention layer parameters, whereas Wg and wg are grasp type attention

layer parameters. zm and zg are final encodings of the original signal for microgesture and grasp type repectively.

zm and zg have the same dimension as the RNN outputs hn which is b (256 in our case). Having higher attention

weightsmn or дn for sliding window n allows network to focus on that window more. This allows network to be

able to focus on where microgestures are applied.

An example visualization of attention mechanism can be seen at Figure 8 where the score of each time step

is accumulated using the attention scores of each sliding window. These visualizations provide insight about

what Graspiot ’sees’ given a signal. The first two rows come from early training iterations (20th and 50th) of

Graspiot where the attention parameters are not trained yet. It can be seen that Graspiot accurately focuses on

informative parts of the signal as iterations continue (100th, 200th and 500th). In some cases such as accept and

reject, the segmentation seems obvious to human eye and it can be possible to write preprocessing methods for

segmentation. However, for some microgestures e.g., select and increase, the subtlety of the microgesture results

in weak sEMG response. A deep learning based segmentation helps us find these correlations in such cases and it

is crucial to a model that can robustly handle microgestures with various signal strengths.

Our two attention layers can be parameterized with following two functions fm : Rd×b 7→ Rband fд : Rd×b 7→

Rb for microgesture and grasp type respectively.

5.3 Multi-Task Learning
One fundamental requirement of Graspiot is to recognize microgestures when a user is grasping certain physical

objects without requiring explicit user input to identify what types of objects or grasps. Since microgesture

performance does depend on grasps, the requirement thus becomes that our model should maintain awareness of

a user’s grasp type when trying to identify a microgesture. To achieve this, our solution to include information

about grasp type is through multi-task learning. Using grasp type classifier as an auxiliary task to the original task

of micro-gesture classification, we are able to help the recognition model to account for microgestural variations

introduced by different grasp types.

Specifically, our final encodings zg and zm after attention layers are passed to two different classifiers: (i) a
micro-gesture classifier that consists of two fully connected layers with hidden dimension of 64, ReLU activation

function and seven outputs for seven microgestures; (ii) a grasp type classifier that has the same architecture as

the first classifier except it has six outputs (for six different grasp types). These classifiers can be parameterized

with following functions: дm : Rb 7→ Rcm and дд : Rb 7→ Rcд , where cm and cд correspond to the number of

classes for microgesture and grasp type classifier. Collectively our networks can be defined as:
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(a) An accept sEMG (b) A select sEMG (c) A reject sEMG (d) An increase sEMG

Fig. 8. Attention heat maps for different microgestures. Attention mechanism gives different weights to different sliding
windows, allowing Graspiot to focus on informative sections of the signal. Heat maps represent what Graspiot ’sees’ when it
looks at a signal. Different rows correspond to different training iterations —20th, 50th, 100th, 200th, 500th iterations. Final
row corresponds to fully trained Graspiot. Some signals are visible to human eye such as accept and reject; some signals are
more subtle i.e., select and increase. Attention mechanism allows Graspiot to process long sequences.

f1(X) = so f tmax(дm(fm(fθ (X))))

lm(f1(X),ym) = −

cm∑
i=1

y(i)m loд(f1(X)(i))
(3)

f2(X) = so f tmax(дд(fд(fθ (X))))

lд(f2(X),yд) = −

cд∑
i=1

y(i)д loд(f2(X)(i))
(4)

where (·)(i) corresponds to ith dimension of the vector, ym and yд correspond to ground truth labels.

lossmicrogesture = lm(f1(X),ym)

lossgrasp = lд(f2(X),yд)

lossfinal = lossmicrogesture + α · lossgrasp

(5)

where α decides on how much importance should be put on microgesture and grasp type classification with

respect to each other. Although we train a grasp type classifier, we are not interested in grasp type classification.

As it is discussed before, grasp type has a significant effect on microgestures. By training both of the networks

together with a loss function at Equation 5, our hybrid CNN-RNN model learns to encode enough information

about both microgesture and grasp types. This results in a better performance compared to directly predicting

microgestures. During hyper-parameter tuning, we found α = 0.3 is the optimal value. Using an alpha much

smaller than 1 makes sure microgesture classification has a bigger effect on the loss and therefore network.
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5.4 Transfer Learning
Previously, transfer learning was applied across different subjects in sEMG domain for the same task [19], i.e.,
different subjects were treated as different datasets. We show that it is also possible to apply transfer learning

across different tasks in sEMG based sensing domain. Specifically, we apply transfer learning from hand gesture

datasets to our micro-gesture dataset. Although applying transfer learning across different tasks is common

practice in other fields such as computer vision, to the best of our knowledge this is the first work in sEMG

literature as far as we know.

Recently, Myo Armband gained popularity in sEMG research [48, 53, 54]. As a result, there has been an

increase in the publicly available online datasets built off of this device. In this work, we use two of such datasets:

Ninapro [53] and the dataset introduced by Côté-Allard et al.[2]. These datasets are for hand gesture classification,
therefore it is not directly portable to our framework. However, they can still be leveraged to pre-train Graspiot to

gain a better initialization for microgesture classification task than standard deep learning initializations such as

Xavier initialization [29]. Even though classifying hand gesture is different than microgesture, both share similar

high-level encoding characteristics of sEMG signals. In this work, we train our CNN-RNNmodel with an attention

layer and a hand gesture classifier. After the training is done, we discard the classifier and attention layer since

they are specific to hand gesture classification task. We plug in the trained CNN-RNN model to Graspiot network

and train the entire network together using AdamOptimizer using the loss function in Equation 5. Training the

entire network helps our pre-trained CNN-RNN model to fine tune its parameters to jointly learn high-level

characteristics about microgesture and grasp type classification. Since CNN-RNN model is already extracting

features from sEMG signals when we start our second training procedure, we also achieve shorter training time

via transfer learning.

5.5 Main Contributions
Our architecture differs from Hu et al.[31] with the following key differences: sliding windows, loss function,

multi task learning and transfer learning. Hu et al. used sliding windows to divide long sequences into shorter

sequences for training. These overlapping shorter sequences are fed to the network as different training samples,

resulting in the loss of long term temporal information. The overlapping sequences are never combined back

together; rather, they are only used as a data augmentation method. In our work, we use sliding windows to

generate shorter sequences in a similar manner. However, we feed all of these sequences together to calculate

a final loss value and train the network. Using these sequences together for training requires a novel way to

combine them later in the network, which is achieved by the attention layer.

As another difference, our loss function only includes the final loss. We believe the combination of using

instantaneous EMG signals and the loss function in [31] might have led to lack of improvement from attention

mechanism. With our network, hidden states are not immediately burdened with prediction, instead they are

trained to represent only the importance directly. As a result, attention mechanism contributes significantly to

the performance in Graspiot which is backed up by experiments.

We also leverage multi-task learning since it naturally fits our problem. Micro-gestures can vary among different

grasp types. In fact, different grasp types can even result in different fingers being used for a microgesture. As a

result, we simultaneously train two classifiers using multi-task learning to imbue the microgesture recognizer

with knowledge of grasp.

6 EXPERIMENTS
We evaluated our solution with various number of tests including different users, different objects and different

networks. The main questions that we try to answer with experiments are,

(1) How well does Graspiot recognize microgestures while grasping objects?
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(2) How well does Graspiot generalize beyond the participants that it is trained for?

(3) How well does Graspiot generalize beyond the objects that it is trained for?

(4) Which components of Graspiot are the most important out of attention mechanism, multi task learning

and transfer learning?

(5) How well does the trained model work in action to recognize microgestures for specific applications?

We use cross validation to report mean and standard deviation of the accuracy. As it is explained before, each

participant have done three repetitions of the experiment. We consider cross validation accuracies in two different

settings. First setting corresponds to within-subject accuracy (WS). In setting WS, for each iteration of cross

validation, a participant is selected. Out of three repetitions, a repetition of the participant is selected to be our

test set. One of the remaining repetitions becomes validation set to decide on when to stop training. The last

repetition is placed in train set. We also add other participants’ —11 participants— data to our train set (all three

repetitions). Addition of data that belongs to other people improves our model’s performance, highlighting that

Graspiot learns how to map information across participants. With setting WS, test participant has less amount of

data in the training set compared to other participants. In order to account for the unbalanced data distribution,

we oversample the training data that comes from the participant that is being tested. Setting WS tests how well a

model works in a subject specific manner. Since sEMG signals can drastically change across subjects, most of the

related works report within-subject accuracy.

Although, user specific implementations are common in sEMG literature; a bigger challenge is to have a model

that generalizes beyond the training set. Second setting corresponds to leave-one-subject-out cross validation

(L1S) where for each iteration of cross validation, nine participants are assigned to be training set, two of the

participants are assigned to be the validation set and the last participant is assigned to be the test set. In setting

L1S, the participant that is in the test set has no data in the training set. Therefore, setting L1S shows us how

well our model statistically generalizes for people that are not in the dataset.

To answer the questions above, first we discuss the signal limitations of microgestures

6.1 Signal Limitation of Microgestures
In order to evaluate which micro-gestures are high-performing we calculate confusion matrices using setting WS

and L1S with seven microgestures which can be seen at Figure 9. As it can be seen from the confusion matrices,

the microgestures; increase, decrease, previous and next have low accuracy and commonly mistaken with each

other. This observation makes intuitive sense due to how similar they are in terms of finger movement — they

all use the same finger. Moreover, due to their subtlety, they have low signal amplitudes which can be seen at

Figure 10. After analyzing these initial results, we decide to train two models one with seven microgestures

and one with four microgestures. The selected four microgestures are; accept, reject, select and increase. The

confusion matrices with four microgestures can be seen at Figure Figure 9. As it can be seen, high accuracies

are achieved with four microgestures. Out of these four microgestures, the most challenging differentiation is

between increase and select which are both subtle microgestures which use the same finger, whereas accept and

reject are distinguishable due to high amplitude signals(Figure 10).

6.2 Baseline Comparisons
In order to show that Graspiot provides a significant performance upgrade over the state of the art sEMG hand

gesture classification networks, we implement four different neural networks as well as a traditional approach

that leverage hand crafted features. We use Phinyomark feature set [51] followed with a SVM for the traditional

approach. We test these models in setting WS and L1S for four and seven micro-gestures. In this work, we have

300 time-steps which is around five times longer than previous works’ input length. Using full long sequence in

these works lead to poor performance. Therefore, in order to make our comparison fair, we use shorter input
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(a) Confusion matrix for Setting
WS with 7 microgestures.

(b) Confusion matrix for Setting
L1S with 7 microgestures.

(c) Confusionmatrix for Set-
ting WS with 4 microges-
tures.

(d) Confusion matrix for
Setting L1S with 4microges-
tures.

Fig. 9. Confusion matrices for setting WS and L1S with 4 and 7 microgestures. Increase, decrease, previous and next
microgestures have lower accuracy than accept, reject and select.

(a) An accept sEMG (b) A reject sEMG (c) A select sEMG

(d) An increase sEMG (e) A decrease sEMG (f) A previous sEMG (g) A next sEMG

Fig. 10. Different examples of sEMG signals for microgestures. As it can be seen; accept, select and reject have higher signals
than increase, decrease, previous and next. As a result, accuracy on increase decrease, previous and next becomes lower.

lengths—similar to their implementation— for AtzoriNet [3], GengNet [28] and HuNet [31] and apply majority

vote to get the final predictions. ZhaiNet is designed for high frequency—2000 Hz— sEMG sensors. We use their

model and adapted spectrograms to our sensors which have 200 Hz sampling rate. Thus, it should be noted that

with better sensors, ZhaiNet accuracies might be different. These models are considered state-of-the-art in sEMG

hand gesture classification task.

As it can be seen from Table 3, Graspiot significantly outperforms previously introduced models in microgesture

classification. Having high accuracy for setting L1S shows that Graspiot statistically generalizes well beyond the

users who are in the dataset. Besides the performance gain, another important observation is the comparison

of setting WS and L1S accuracies. Graspiot shows comparable results in setting WS and L1S. This shows that

additional data from the user for training is not required for Graspiot to work, although slightly better performance

is possible if it is provided.

It is also interesting to point out the similar performances for setting WS and L1S for other models. Setting WS

provides almost no improvements over setting L1S for these models. This shows that state-of-the-art models
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Table 3. Mean and standard deviation of accuracies for different models in setting A and B.

Model Setting WS with Setting L1S with Setting WS with Setting L1S with
4 Microgestures 4 Microgestures 7 Microgestures 7 Microgestures

Feature-SVM 43.17 ± 9.39 42.22 ± 9.21 25.81 ± 10.07 25.79 ± 11.59

AtzoriNet[3] 46.88 ± 6.12 46.11 ± 6.01 29.22 ± 3.52 28.11 ± 4.07

GengNet[28] 42.52 ± 6.77 42.24 ± 6.78 27.19 ± 8.51 25.24 ± 8.65

ZhaiNet[66] 46.55 ± 5.50 45.89 ± 5.20 30.19 ± 8.98 29.89 ± 8.53

HuNet[31] 47.97 ± 4.57 47.94 ± 5.09 32.19 ± 2.93 31.86 ± 3.33

Graspiot 81.60 ± 6.51 77.63 ± 5.21 60.84 ± 5.97 54.66 ± 5.62

fail to identify similar users and can not leverage training data from the test users. This is also related with

the fact that they fail to have high performance in our task, both indicating that they can not effectively learn

microgestures. Whereas, Graspiot provides a method that generalizes well and it can further improve performance

with data from the user.

6.3 Object Comparisons
Another important question to answer is whether Graspiot works with different objects that it has not seen

before. In order to answer this question, we apply another cross validation in two new settings. In first setting,

for each iteration, we select an object to be our test set, two objects are assigned to be validation set and the

remaining objects are assigned to be train set. We refer to this setting as leave-one-object-out (L1O). L1O gives

us information about how well our model generalizes beyond the objects that are in the dataset, within a user

specific context. Therefore, it is a user specific cross object analysis. However, since the model might be learning

information about the user we have an additional setting we refer as leave one object and subject out (L1S&O). In

L1S&O, for each iteration, we choose a user and an object which is our test set. Excluding the user and the object,

other two objects are chosen to become our validation set and the remaining objects become our training set.

Note that the user chosen for test set has no data in validation or training set.

Setting L1O gives us within-subject, leave-one-out object cross validation results. For setting L1S&O, we have

a cross validation where we iterate through users and objects together. Setting L1S&O gives us across-users

leave-one-out object cross validation results. Therefore, setting L1S&O corresponds to the case where a new user

is interacting with a new object; and setting L1O corresponds to a known user —a user who provided training

data— interacting with a new object. The left out object accuracy in setting L1O and L1S&O for four and seven

microgestures are given in Table 4.

As it can be seen, there is one outlier in microgesture classification when pencil is used. One of the users

had lower performance with pencil even though the rest of the users had average performance. This lead to

slightly lower performance and high standard deviation in accuracy. We believe having only one person with low

performance indicates that he did not perform the gestures accurately. During data collection, it is not possible

to keep the user in the loop by giving feedback. We argue that in real-time applications, as the users interact

with the system, they get used to it. The dataset collection did not have the user in the loop and as a result, users

had no way to ’improve’ their microgestures. We test this hypothesis in user study and reveal that even higher

accuracies than what is reported in this section can be achieved after short amount of interaction with Graspiot.

To conclude, Graspiot generalizes well across different objects. Both setting C and D give high accuracies

meaning that Graspiot does not rely on user’s training data or object. We further test these results with a user

study where we introduce new users and new objects to test Graspiot.
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Table 4. Mean and standard deviation of accuracies for different objects in setting L1O and L1S&O.

Grasp Object Setting L1O with Setting L1S&O with Setting L1O with Setting L1S&O with
Type 4 Microgestures 4 Microgestures 7 Microgestures 7 Microgestures

Cylindrical

Marker Pen 82.03 ± 4.27 81.60 ± 4.67 55.80 ± 6.79 57.29 ± 7.79

Vitamin Bottle 88.54 ± 4.09 84.77 ± 4.79 59.38 ± 2.59 56.46 ± 7.84

Palmar

Post-it Notes 78.13 ± 5.78 78.13 ± 7.25 57.59 ± 8.59 52.50 ± 8.54

Box 78.91 ± 5.76 75.00 ± 5.24 57.59 ± 3.98 50.42 ± 5.10

Hook

Coat Hanger 81.25 ± 6.15 78.91 ± 4.85 53.57 ± 6.55 52.08 ± 7.08

Backpack 86.72 ± 2.25 80.21 ± 3.89 66.07 ± 7.25 55.63 ± 8.48

Lateral

Credit Card 85.42 ± 5.00 81.25 ± 5.01 77.08 ± 4.85 71.88 ± 5.89

A4 paper 83.33 ± 4.44 85.94 ± 3.99 89.58 ± 3.74 78.13 ± 5.21

Tip

Needle 87.50 ± 2.22 86.46 ± 2.87 73.96 ± 5.51 77.60 ± 7.25

Pencil 69.53 ± 9.89 63.28 ± 9.58 57.50 ± 8.72 54.55 ± 8.24

Spherical

Tennis Ball 83.59 ± 5.74 81.25 ± 5.87 70.63 ± 6.89 64.38 ± 5.89

Camera Bag 78.13 ± 4.26 75.78 ± 5.04 71.25 ± 9.05 64.20 ± 7.47

Average 81.13 ± 4.81 77.78 ± 4.89 62.25 ± 7.28 55.20 ± 6.78

6.4 Source of Gain
Graspiot shows great performance gain compared to traditional hand gesture networks. Main reason is that

Graspiot is designed specifically for sEMG microgesture signals. Furthermore, it is important to understand

where does the exact improvement come from. In order to show the importance of different components in

Graspiot, such as transfer learning (TL), multi-task learning (MTL) and attention mechanism (Att.) we train

different models by removing these components one by one. The results can be seen at Table 5.

Table 5. Mean and standard deviation of accuracies for different models in setting A and B. Different models corresponds to
Graspiot with a removed component.

Model Setting WS Setting L1S Setting WS Setting L1S Training
w/ 4 Microg. w/ 4 Microg. w/ 7 Microg. w/ 7 Microg. Time

Graspiot 81.60 ± 6.51 77.63 ± 5.21 60.84 ± 5.97 54.66 ± 5.62 57.3 secs

Graspiot w/o TL 81.24 ± 5.99 77.31 ± 4.86 60.78 ± 5.77 54.46 ± 4.98 116.1 secs
Graspiot w/o MTL 75.71 ± 5.91 72.40 ± 4.51 53.64 ± 4.98 50.62 ± 4.82 55.2 secs

Graspiot w/o Att. 47.12 ± 4.76 46.89 ± 4.99 30.78 ± 3.23 30.52 ± 2.94 27.2 secs

It can be seen that transfer learning does not improve the performance significantly. However, when transfer

learning is applied the model convergences 2 times faster. We believe that this is due to sEMG signals sharing

common features across different tasks. However, datasets for hand gesture classification do not carry enough

information about microgesture classification to get a better micro-gesture classifier. Faster training times add up

and let us try more configurations which eventually lead to higher performance. More importantly, for tasks

with bigger sEMG datasets, faster convergence time can make a difference.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.



894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

0:20 • Anon.

Multi task learning improves the accuracy by 10% which shows that the grasp type information available in

the sEMG signals, help the model make better microgesture predictions. Multi-task learning allow us to account

for the variations caused by different hand geometries of different grasp types. The biggest improvement in

performance comes from attention mechanism which is around 65%. When the attention mechanism is removed,

Graspiot first encodes 300 time steps into 300 hidden states. These 300 states are fed into RNN at different times

and the final state of the RNN is used for multi-task learning. Key differences here with respect to Graspiot are:

(i) not using sliding windows, (ii) only using the final state of RNN. Not using sliding windows increases the

number of hidden states from 10 to 300 and RNN struggles to remember the sequence. Only using the final state

has a similar effect where RNN struggles to remember the prior states. To gain further insight into the attention

mechanism, we train two final models where in first; we use sliding windows without attention layer and in

second; we use attention layer but do not use sliding windows. The results can be seen at Table 6.

Table 6. Mean and standard deviation of accuracies for different models in setting WS and L1S. Different models corresponds
to Graspiot with a removed component.

Model Setting WS Setting L1S Setting WS Setting L1S Training
w/ 4 Microg. w/ 4 Microg. w/ 7 Microg. w/ 7 Microg. Time

Graspiot 81.60 ± 6.51 77.63 ± 5.21 60.84 ± 5.97 54.66 ± 5.62 57.3 secs

Graspiot w/o Sliding Window 54.87 ± 5.07 51.74 ± 5.12 40.12 ± 5.39 37.87 ± 5.12 25.3 secs

Graspiot w/o Attention Layer 78.31 ± 4.99 72.84 ± 7.82 57.62 ± 5.38 50.96 ± 7.29 55.9 secs

As it can be seen, the most important part of Graspiot is reducing the number of time-steps for RNN with

sliding windows. Applying attention mechanism without the sliding window can not compensate for the lack of

short sequences.

7 USER STUDY
To test Graspiot in action and how the microgestures can be used in specific applications, we conducted a lab

user study.

7.1 Participants
We recruited 10 participants (9 male and 2 female, aged 20–26) from a local university, including six participants

who took part in the data collection and four new participants. In order to test our method fairly, for the users

who took part in the data collection, we used a separate model trained without his/her data. Thus, we have

six different microgesture classifiers for the six ‘experienced’ participants and one model trained with all the

collected training data for the four new participants. Each participant received a $25 gift card as compensation.

7.2 Apparatus
We used the same Myo armband to collect sEMG signal from each participant’s forearm. To trigger the recognition

of a microgesture, we appropriated an activation mechanism using Myo’s built-in wave-out gesture. This gesture

is akin to a wrist extension, which can be detected by Myo’s default recognizer with very few false positives. The

recognition model was the same as the one we implemented per the Method section. All the applications were

native programs on a Microsoft Windows OS and we simply implemented a mouse/keyboard remapping that

allowed us to customize which microgesture triggered which functionality. Finally, we provided a box of various
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everyday objects as props to simulate different task scenarios (e.g., holding a coffee mug, gripping a bike handle)

and to prompt participants’ choice of using microgestures.

7.3 Microgestures
We chose four micro-gestures: accept, reject, select and up (Figure 5), based on their robustness as shown in

earlier experiment. Participants were given the following instructions (accompanied with visuals that depicted

how each microgesture works) to perform these four micro-gestures: (i) accept—squeeze the object with all

fingers; (ii) reject—hold the object with index finger and thumb, and extend the other three fingers; (iii) select—tap
on the object or the palm with thumb, index finger or middle finger, whichever is comfortable for them; and

(iv) increase—slide up the thumb or the index finger on an object slowly. To avoid priming the participants how

they would want to use these microgestures, we chose not to use their original names (accept, reject, select and

increase); instead we only described to each participant how to perform each microgesture.

7.4 Procedure and tasks
We started with a brief tutorial teaching each participant how to perform the activation gesture as well as the

four microgestures. Then participants were free to practice for about five minutes.

The main tasks consisted of participants performing microgestures in five specific application scenarios

designed to motivate the use of microgesture while grasping certain objects. Instead of having participants

follow scripted gestural control, we wanted to allow them to customize how they would use our microgestures,

i.e., specifying the mapping from microgestures to specific application functionalities. We believed this design

revealed participants’ preference and ‘style’ of using microgestures.

The five application scenarios are as follows:

(1) Incoming call: a user needs to hang up an incoming call without retrieving the phone, e.g., during a meeting,

or when both hands are carrying items;

(2) Music player: a user wants to control a music player, e.g., to play/pause and go to the next/previous song

while holding a pen for writing or holding a bike handle for riding;

(3) Slides presentation: a user controls a presentation of slides to go forward, backward or restart while holding

a coffee mug or a marker pen for writing on the projected white board;

(4) Painting: when drawing on a tablet computer using a stylus, a user wants to access various menu options

without interrupting the drawing, e.g., switching between pencil and eraser, and changing colors.

(5) Camera: when using a camera for a ‘selfie’ or group photo, a user wants to step away but still able to

control the trigger to capture a photo;

Although we included which objects to grasp as part of a coherent scenario, participants were allowed to

switch to other objects and to pretend they were using the application in a different context, e.g., holding a spatula
for cooking when having to play/pause a music player or control AC.

For each application, we first introduced a selected set of its functionality. We then let the participant to

choose four functionalities that a microgesture might be useful for. Then participants were asked to choose which

microgesture to map to which functionality. An experimentor would edit the configure file accordingly, which

was then imported into the application to update its microgesture-to-functionality mapping. This on-the-fly

configuration usually took less than one minute, after which participants were free to try out the microgesture

interaction they came up with.

The entire session was audio/video taped. We also observed and calculated the error rate of the recognition,

as well as false positive and false negative of the activation gesture. After each task, we asked participants the

following qualitative questions: (i) whether Graspiot provided a useful control in the tested scenario; (ii) whether
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Fig. 11. Confusion matrix of the user study.

the system behaved as they expected; (iii) whether the system responded promptly to user input; (iv) whether
the system was easy to use; and (v) other possible application scenarios using Graspiot.

7.5 Analysis & results
We report Graspiot’s performance in action, how participants mapped microgestures to applications, and partici-

pants’ feedback and reactions.

Performance of Graspiot’s microgesture recognizer The confusion matrix for our user study can be seen at

Figure 11. The average accuracy is 75.81%. The accuracy for each microgestures vary. Accept has 76%, reject has

87%, select has 82% and increase has 50% accuracy, which are all in the same range of what our offline dataset

showed. It can be seen that the increase microgesture has the worst performance due to its poor sEMG response.

It is also important to note that, increase is mostly confused with select microgesture which has the second

weakest sEMG response after increase. Accept and reject both have strong signals resulting on high accuracies.

Feedback & reactions We summarize participants feedback and reactions to using Graspiot, organized into

the following themes:

All but one participant thought Graspiot’s microgestures were useful in the application scenarios. When asked

about whether Graspiot behaved as they expected, participants had split opinions. Some participants felt the

recognition was generally accurate (P1, P8), while some pointed out a feeling of inaccuracy when grasping the

pen in the painting application (P4 and P5). This might have been due to the fact that participants used different

grips on the pen, which resulted in performing accept using different combinations of fingers. We also noticed

that how participants curled their finger for tapping affected the pattern of signals, which we will account for

in future work. P6, P7 and P9 felt accept and reject were fairly accurate but the other two not so much. Indeed,

select and increase have subtler motion than accept and reject, both of which involve multiple fingers with more

overt and movement that is more distinguishable.

All but two participants acknowledged that Graspiot responded quickly to microgestures. For those two

participants: P4 commented on one application (iTunes as a music player) having latency, which was probably

an OS issue rather than Graspiot’s response time. P3 pointed out that the ‘trigger’, i.e., the activation gesture,

seemed slow, which might have been a Myo problem given P3’s relatively thin arm.

When asked whether Graspiot was easy to use, the major complaint is on the activation gesture. Participants

raised issues related to fatigue (P6, P7) and hardness to perform (P9, 10). While our research focus is on the
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microgesture rather than the activation mechanism, the participants’ reaction suggested that these two should be

considered integrally. Indeed, future work should investigate perhaps a specific class of microgesture that both

are easy to perform and has high accuracy to serve as an activation mechanism (in fact, the accept and reject

microgestures might be two good candidates).

When asked what other interaction scenarios they would want to use Graspiot’s microgestures, participants

provided a diverse set of suggestions. A majority mentioned situational impairment, e.g., controlling devices or
applications when driving (P5), cooking (P6, P8), giving a public speech (P7), taking a bath (P7). The other main

category is IoT control (P2, P3, P4, P10).

When asked whether there was noticeable learning effect in performing the microgestures, i.e., , whether they
felt Graspiot recognized their microgestures better or worse over time, six participants responded positively

toward the device and microgestures, e.g., “I feel more confident to perform the micro-gestures as I learn it better

gradually” (P1) and “At beginning I found it very hard to perform, but now I can almost make all the gestures

correct” (P8); one responded negatively, mentioning an increasing fatigue; the rest of the participants did not

indicate either better or worse experience over time. User study took 40 minutes on average.

8 DISCUSSION & FUTURE WORK
Graspiot uses a hybrid network that has convolutional neural network (CNN) and recurrent neural network

(RNN) with attention mechanism. The network also leverages transfer learning and multi-task learning for better

performance. Graspiot has many capabilities including; processing variable length input, learning from long

sequences with small amount of data without overfitting. All of these capabilities make it possible for Graspiot

to be able to learn micro-gestures from sEMG data which is not possible with previously introduced networks.

Although it is designed for microgestures, Graspiot is a general solution and can be easily applied to any long

sequence. Experiments show that Graspiot outperforms state-of-the-art hand gesture detection networks.

Sensor Fusion In the future, to further explore the possibilities in Graspiot, more sensors around the user’s

arm can be utilized. Different sensor fusion mechanisms then can be applied to address some of the issues we

dealt with during our data collection. For instance, the sensor fusion techniques can improve the classification

performance during weak signals or noisy channels.

Trigger mechanism Utilizing different types of sensors instead of solely focusing on sEMG sensors, can provide

Graspiot better trigger mechanism. For example, adding an IMU sensor and having access to gyroscope and

accelerometer readings can significantly simplify the trigger mechanism.

Segmentation In this work, one of our limitation is the fixed detection window. In the future, a real time

segmentation will be considered. This is a challenging problem due to low sEMG signal amplitudes but with the

addition of new sensors, better segmentation can be possible.

Mobile Graspiot Graspiot is a small network compared to traditionally large neural networks and it can fit in

smartphones. Even though we utilized GPUs for this work, the model can run on smartphone CPU. This can

unlock many new interaction possibilities and use cases for Graspiot. In the future, mobile applications will be

considered.

Exploring new applications Graspiot micro-gesture detection algorithm, employing only surface EMG sensors,

can be the means for many IoT interactions. With improving the classification accuracy and deploying other

sensors Graspiot can bring a large number of new innovative applications to the world of IoT.

REFERENCES
[1] João Gabriel Abreu, João Marcelo Teixeira, Lucas Silva Figueiredo, and Veronica Teichrieb. 2016. Evaluating sign language recognition

using the myo armband. In 2016 XVIII Symposium on Virtual and Augmented Reality (SVR). IEEE, 64–70.
[2] Ulysse Côté Allard, François Nougarou, Cheikh Latyr Fall, Philippe Giguère, Clément Gosselin, François Laviolette, and Benoit Gosselin.

2016. A convolutional neural network for robotic arm guidance using sEMG based frequency-features. In 2016 IEEE/RSJ International

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.



1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

0:24 • Anon.

Conference on Intelligent Robots and Systems (IROS). IEEE, 2464–2470.
[3] Manfredo Atzori, Matteo Cognolato, and Henning Müller. 2016. Deep learning with convolutional neural networks applied to

electromyography data: A resource for the classification of movements for prosthetic hands. Frontiers in neurorobotics 10 (2016), 9.
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate.

arXiv preprint arXiv:1409.0473 (2014).
[5] Michela Balconi, Adriana Bortolotti, and Ludovica Gonzaga. 2011. Emotional face recognition, EMG response, and medial prefrontal

activity in empathic behaviour. Neuroscience Research 71, 3 (2011), 251–259.

[6] Robbin Battison. 1978. Lexical borrowing in American sign language. (1978).

[7] Marco E Benalcázar, Andrés G Jaramillo, A Zea, Andrés Páez, Víctor Hugo Andaluz, et al. 2017. Hand gesture recognition using machine

learning and the Myo armband. In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 1040–1044.
[8] Marco E Benalcázar, Cristhian Motoche, Jonathan A Zea, Andrés G Jaramillo, Carlos E Anchundia, Patricio Zambrano, Marco Segura,

Freddy Benalcázar Palacios, and María Pérez. 2017. Real-time hand gesture recognition using the myo armband and muscle activity

detection. In 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). IEEE, 1–6.
[9] Roger Boldu, Alexandru Dancu, Denys JC Matthies, Pablo Gallego Cascón, Shanaka Ransir, and Suranga Nanayakkara. 2018. Thumb-In-

Motion: Evaluating Thumb-to-Ring Microgestures for Athletic Activity. In Proceedings of the Symposium on Spatial User Interaction.
ACM, 150–157.

[10] Claudio Castellini, Emanuele Gruppioni, Angelo Davalli, and Giulio Sandini. 2009. Fine detection of grasp force and posture by amputees

via surface electromyography. Journal of Physiology-Paris 103, 3-5 (2009), 255–262.
[11] Claudio Castellini and Patrick van der Smagt. 2009. Surface EMG in advanced hand prosthetics. Biological cybernetics 100, 1 (2009),

35–47.

[12] Claudio Castellini, Patrick Van Der Smagt, Giulio Sandini, and Gerd Hirzinger. 2008. Surface EMG for force control of mechanical hands.

In 2008 IEEE International Conference on Robotics and Automation. IEEE, 725–730.
[13] Edwin Chan, Teddy Seyed, Wolfgang Stuerzlinger, Xing-Dong Yang, and Frank Maurer. 2016. User elicitation on single-hand microges-

tures. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 3403–3414.

[14] Liwei Chan, Rong-Hao Liang, Ming-Chang Tsai, Kai-Yin Cheng, Chao-Huai Su, Mike Y Chen, Wen-Huang Cheng, and Bing-Yu Chen.

2013. FingerPad: private and subtle interaction using fingertips. In Proceedings of the 26th annual ACM symposium on User interface
software and technology. ACM, 255–260.

[15] Xiang Chen, Xu Zhang, Zhang-Yan Zhao, Ji-Hai Yang, Vuokko Lantz, and Kong-Qiao Wang. 2007. Hand gesture recognition research

based on surface EMG sensors and 2D-accelerometers. In 2007 11th IEEE International Symposium on Wearable Computers. IEEE, 11–14.
[16] Xiang Chen, Xu Zhang, Zhang-Yan Zhao, Ji-Hai Yang, Vuokko Lantz, and Kong-Qiao Wang. 2007. Multiple hand gesture recognition

based on surface EMG signal. In 2007 1st International conference on Bioinformatics and Biomedical Engineering. IEEE, 506–509.
[17] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.

Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).
[18] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.

[19] Ulysse Côté-Allard, Cheikh Latyr Fall, Alexandre Drouin, Alexandre Campeau-Lecours, Clément Gosselin, Kyrre Glette, François

Laviolette, and Benoit Gosselin. 2019. Deep learning for electromyographic hand gesture signal classification using transfer learning.

IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 4 (2019), 760–771.

[20] Carlo J De Luca. 1997. The use of surface electromyography in biomechanics. Journal of applied biomechanics 13, 2 (1997), 135–163.
[21] A Doswald, F Carrino, and F Ringeval. 2014. Advanced processing of semg signals for user independent gesture recognition. In XIII

Mediterranean Conference on Medical and Biological Engineering and Computing 2013. Springer, 758–761.
[22] Yu Du, Wenguang Jin, Wentao Wei, Yu Hu, and Weidong Geng. 2017. Surface EMG-based inter-session gesture recognition enhanced by

deep domain adaptation. Sensors 17, 3 (2017), 458.
[23] Yu Du, Yongkang Wong, Wenguang Jin, Wentao Wei, Yu Hu, Mohan S Kankanhalli, and Weidong Geng. 2017. Semi-Supervised Learning

for Surface EMG-based Gesture Recognition.. In IJCAI. 1624–1630.
[24] Yi-Chun Du, Chia-Hung Lin, Liang-Yu Shyu, and Tainsong Chen. 2010. Portable hand motion classifier for multi-channel surface

electromyography recognition using grey relational analysis. Expert Systems with Applications 37, 6 (2010), 4283–4291.
[25] Christoph Endres, Tim Schwartz, and Christian A Müller. 2011. Geremin: 2D microgestures for drivers based on electric field sensing. In

Proceedings of the 16th international conference on Intelligent user interfaces. ACM, 327–330.

[26] Simon Ferguson and G Reg Dunlop. 2002. Grasp recognition from myoelectric signals. In Proceedings of the Australasian Conference on
Robotics and Automation, Auckland, New Zealand, Vol. 1.

[27] Euan Freeman, Gareth Griffiths, and Stephen A Brewster. 2017. Rhythmic micro-gestures: discreet interaction on-the-go. In Proceedings
of the 19th ACM International Conference on Multimodal Interaction. ACM, 115–119.

[28] Weidong Geng, Yu Du, Wenguang Jin, Wentao Wei, Yu Hu, and Jiajun Li. 2016. Gesture recognition by instantaneous surface EMG

images. Scientific reports 6 (2016), 36571.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.



1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

GRASPIOT • 0:25

[29] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics. 249–256.

[30] Jun Gong, Yang Zhang, Xia Zhou, and Xing-Dong Yang. 2017. Pyro: Thumb-tip gesture recognition using pyroelectric infrared sensing.

In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, 553–563.

[31] Yu Hu, Yongkang Wong, Wentao Wei, Yu Du, Mohan Kankanhalli, and Weidong Geng. 2018. A novel attention-based hybrid CNN-RNN

architecture for sEMG-based gesture recognition. PloS one 13, 10 (2018), e0206049.
[32] Yonghong Huang, Kevin B Englehart, Bernard Hudgins, and Adrian DC Chan. 2005. A Gaussian mixture model based classification

scheme for myoelectric control of powered upper limb prostheses. IEEE Transactions on Biomedical Engineering 52, 11 (2005), 1801–1811.
[33] Bernard Hudgins, Philip Parker, and Robert N Scott. 1993. A new strategy for multifunction myoelectric control. IEEE Transactions on

Biomedical Engineering 40, 1 (1993), 82–94.

[34] Scott E Hudson, Chris Harrison, Beverly L Harrison, and Anthony LaMarca. 2010. Whack gestures: inexact and inattentive interaction

with mobile devices. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction. ACM, 109–112.

[35] Nayan M Kakoty and Shyamanta M Hazarika. 2011. Recognition of grasp types through principal components of dwt based emg features.

In 2011 IEEE International Conference on Rehabilitation Robotics. IEEE, 1–6.
[36] Nayan M Kakoty, Shyamanta M Hazarika, and John Q Gan. 2016. EMG feature set selection through linear relationship for grasp

recognition. Journal of Medical and Biological Engineering 36, 6 (2016), 883–890.

[37] Nayan M Kakoty, Adity Saikia, and Shyamanta M Hazarika. 2015. Exploring a family of wavelet transforms for EMG-based grasp

recognition. Signal, Image and Video Processing 9, 3 (2015), 553–559.

[38] Engin Kaya and Tufan Kumbasar. [n. d.]. Hand Gesture Recognition Systems with the Wearable Myo Armband. ([n. d.]).

[39] Rami N Khushaba, Ali H Al-Timemy, Ahmed Al-Ani, and Adel Al-Jumaily. 2017. A framework of temporal-spatial descriptors-based

feature extraction for improved myoelectric pattern recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25,

10 (2017), 1821–1831.

[40] Rami N Khushaba, Sarath Kodagoda, Maen Takruri, and Gamini Dissanayake. 2012. Toward improved control of prosthetic fingers

using surface electromyogram (EMG) signals. Expert Systems with Applications 39, 12 (2012), 10731–10738.
[41] Jonghwa Kim, Stephan Mastnik, and Elisabeth André. 2008. EMG-based hand gesture recognition for realtime biosignal interfacing. In

Proceedings of the 13th international conference on Intelligent user interfaces. ACM, 30–39.

[42] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. 2016. Revisiting batch normalization for practical domain

adaptation. arXiv preprint arXiv:1603.04779 (2016).
[43] Jaime Lien, Nicholas Gillian, M Emre Karagozler, Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016.

Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Transactions on Graphics (TOG) 35, 4 (2016), 142.
[44] Yi-Hung Liu, Han-Pang Huang, and Chang-Hsin Weng. 2007. Recognition of electromyographic signals using cascaded kernel learning

machine. IEEE/ASME Transactions on Mechatronics 12, 3 (2007), 253–264.
[45] Christine L MacKenzie and Thea Iberall. 1994. The grasping hand. Vol. 104. Elsevier.
[46] Roberto Merletti, Philip A Parker, and Philip J Parker. 2004. Electromyography: physiology, engineering, and non-invasive applications.

Vol. 11. John Wiley & Sons.

[47] Ganesh R Naik, Amit Acharyya, and Hung T Nguyen. 2014. Classification of finger extension and flexion of EMG and Cyberglove data

with modified ICA weight matrix. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE, 3829–3832.

[48] Kristian Nymoen, Mari Romarheim Haugen, and Alexander Refsum Jensenius. 2015. Mumyo–evaluating and exploring the myo armband

for musical interaction. (2015).

[49] Francesca Palermo, Matteo Cognolato, Arjan Gijsberts, Henning Müller, Barbara Caputo, and Manfredo Atzori. 2017. Repeatability of

grasp recognition for robotic hand prosthesis control based on sEMG data. In 2017 International Conference on Rehabilitation Robotics
(ICORR). IEEE, 1154–1159.

[50] Ki-Hee Park and Seong-Whan Lee. 2016. Movement intention decoding based on deep learning for multiuser myoelectric interfaces. In

2016 4th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 1–2.
[51] Angkoon Phinyomark, Pornchai Phukpattaranont, and Chusak Limsakul. 2012. Feature reduction and selection for EMG signal

classification. Expert systems with applications 39, 8 (2012), 7420–7431.
[52] Angkoon Phinyomark, Franck Quaine, Sylvie Charbonnier, Christine Serviere, Franck Tarpin-Bernard, and Yann Laurillau. 2013. EMG

feature evaluation for improving myoelectric pattern recognition robustness. Expert Systems with applications 40, 12 (2013), 4832–4840.
[53] Stefano Pizzolato, Luca Tagliapietra, Matteo Cognolato, Monica Reggiani, Henning Müller, and Manfredo Atzori. 2017. Comparison of

six electromyography acquisition setups on hand movement classification tasks. PloS one 12, 10 (2017), e0186132.
[54] Seema Rawat, Somya Vats, and Praveen Kumar. 2016. Evaluating and exploring the MYO ARMBAND. In 2016 International Conference

System Modeling & Advancement in Research Trends (SMART). IEEE, 115–120.
[55] Ali-Akbar Samadani and Dana Kulic. 2014. Hand gesture recognition based on surface electromyography. In 2014 36th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 4196–4199.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.



1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

0:26 • Anon.

[56] Georg Schlesinger. 1919. Der mechanische aufbau der künstlichen glieder. In Ersatzglieder und Arbeitshilfen. Springer, 321–661.
[57] Adwait Sharma, Joan Sol Roo, and Jürgen Steimle. 2019. Grasping Microgestures: Eliciting Single-hand Microgestures for Handheld

Objects. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 402.

[58] Mohamed Soliman, Franziska Mueller, Lena Hegemann, Joan Sol Roo, Christian Theobalt, and Jürgen Steimle. 2018. FingerInput:

Capturing expressive single-hand thumb-to-finger microgestures. In Proceedings of the 2018 ACM International Conference on Interactive
Surfaces and Spaces. ACM, 177–187.

[59] Dennis Tkach, He Huang, and Todd A Kuiken. 2010. Study of stability of time-domain features for electromyographic pattern recognition.

Journal of neuroengineering and rehabilitation 7, 1 (2010), 21.

[60] Michael Wand and Jürgen Schmidhuber. 2016. Deep Neural Network Frontend for Continuous EMG-Based Speech Recognition.. In

INTERSPEECH. 3032–3036.
[61] Michael Wand and Tanja Schultz. 2014. Pattern learning with deep neural networks in EMG-based speech recognition. In 2014 36th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 4200–4203.
[62] Katrin Wolf, Anja Naumann, Michael Rohs, and Jörg Müller. 2011. A taxonomy of microinteractions: Defining microgestures based on

ergonomic and scenario-dependent requirements. In IFIP conference on human-computer interaction. Springer, 559–575.
[63] Mike Wu, Chia Shen, Kathy Ryall, Clifton Forlines, and Ravin Balakrishnan. 2006. Gesture registration, relaxation, and reuse for

multi-point direct-touch surfaces. In First IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP’06).
IEEE, 8–pp.

[64] Peng Xia, Jie Hu, and Yinghong Peng. 2018. EMG-based estimation of limb movement using deep learning with recurrent convolutional

neural networks. Artificial organs 42, 5 (2018), E67–E77.
[65] Aaron J Young, Lauren H Smith, Elliott J Rouse, and Levi J Hargrove. 2012. Classification of simultaneous movements using surface

EMG pattern recognition. IEEE Transactions on Biomedical Engineering 60, 5 (2012), 1250–1258.

[66] Xiaolong Zhai, Beth Jelfs, Rosa HM Chan, and Chung Tin. 2017. Self-recalibrating surface EMG pattern recognition for neuroprosthesis

control based on convolutional neural network. Frontiers in neuroscience 11 (2017), 379.
[67] Muhammad Zia ur Rehman, Asim Waris, Syed Gilani, Mads Jochumsen, Imran Niazi, Mohsin Jamil, Dario Farina, and Ernest Kamavuako.

2018. Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 18, 8 (2018), 2497.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2019.


	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Limitations

	2 Related Work
	2.1 Single-hand Microgestures
	2.2 sEMG-based Input Sensing
	2.3 Deep Learning Based sEMG Signal Classification

	3 Understanding Microgesture Through the Lens of sEMG Signals
	3.1 Different Grasps Cause Microgestural Variance
	3.2 Subtlety & Ephemerality Exacerbate Segmentation

	4 Hardware and Data Acquisition
	4.1 Hardware and Sensor Placement
	4.2 Software
	4.3 Data Collection

	5 Method
	5.1 Feature Extraction with a Hybrid CNN-RNN Architecture
	5.2 Attention Mechanism
	5.3 Multi-Task Learning
	5.4 Transfer Learning
	5.5 Main Contributions

	6 Experiments
	6.1 Signal Limitation of Microgestures
	6.2 Baseline Comparisons
	6.3 Object Comparisons
	6.4 Source of Gain

	7 User Study
	7.1 Participants
	7.2 Apparatus
	7.3 Microgestures
	7.4 Procedure and tasks
	7.5 Analysis & results

	8 Discussion & Future Work
	References

